
Contemporary Software Modernization: Perspectives
and Challenges to Deal with Legacy Systems

Wesley Klewerton Guez Assunção
Johannes Kepler University Linz, Austria

Pontifical Catholic University of Rio de Janeiro, Brazil
wesley.assuncao@jku.at

Abstract—Software modernization is an inherent activity of
software engineering, as inevitably systems become old and tech-
nology advances. The term “software modernization” emerged
as a research topic in the early 2000’s, with a differentiation of
the traditional software evolution. Studies on this topic became
popular due to new programming paradigms, technologies, and
architectural styles. Due to the pervasive nature of software
nowadays, modernizing legacy systems is paramount to provide
users with competitive and innovative products and services.
Despite the many pieces of work existing in literature, there
are some limitations in this topic: (i) proposed approaches are
too specific for one scenario or technology lacking flexibility, (ii)
most of proposed approaches are not aligned with the current
modern software development scenario, and (iii) based on a
myriad of potential modernization approaches, practitioners may
be misguided on how to modernize legacies. In this work, our
goal is to call the attention to the need of advances in the research
and practices towards well-defined software moderation field. The
focus is to enable companies to preserved knowledge represented
in legacy systems while employing disruptive and emerging
technologies to benefit users. Based on that, we contextualize the
different perspectives of software modernization in the context
of contemporary software development. Also, we introduce a
research agenda with 10 challenges to be taken into account.

Index Terms—Legacy applications, software aging, reverse
engineering, Re-Engineering, Software Migration.

I. INTRODUCTION

Throughout the software life cycle, the architecture de-
cay and degrade, the user requirements change, technologies
evolve, and new business models emerge, leading to what
are called legacy systems [1]. The large majority of existing
industrial software are long-lived systems that represent sev-
eral years of competitive knowledge and business value [2].
However, due to extensive maintenance and obsolete technol-
ogy, legacy systems are costly to maintain, more exposed to
cybersecurity risks, less effective in meeting their intended
purpose, and push up costs of digital transformation [3],
[4], [5]. For instance, the US government spent over $90
billion in fiscal year 2019 on IT, from which about 80% was
used to operate and maintain legacy systems [3]. Also, the
UK government spends £4.7 billion a year on IT across all
departments, and £2.3 billion goes on patching up systems,
some of which date back 30 years or more [4]. To remain
competitive, companies must modernize their legacy systems,
preserving the hard-earned knowledge acquired through many
years of system development [2], [6], [7].

According to Seacord et al. [6] “Software modernization
attempts to evolve a legacy system, or elements of the system,
when conventionally evolutionary practices, such maintenance
and enhancement, can no longer achieve the desired system
properties.” The process of modernizing a legacy system
leads to benefits such as easing engineering activities, satis-
fying user needs, achieving new business goals, or reducing
costs [6]. Also, modernization is a mean to leverage the digital
transformation [5], [8], as it allows using emerging/disruptive
technologies such as artificial intelligence, high-performance
computing, cloud computing, IoT, robotics, and big data.

In the literature, we can find several modernization strate-
gies [8], [9]. For example, restructuring systems using compo-
nents, adoption of aspect-oriented development, re-engineering
of system variants into software product lines, migration to mi-
croservices, and supporting for new hardware, e.g., multi-core.
Even the software development process has been modernized,
e.g., DevOps. We can also observe that the modernization has
different driving forces and impacts related to organizational,
operational, and technological aspects. For instance, the mod-
ernization can focus on independence for agile teams, optimize
the deployment, ease the inclusion of innovation, facilitate
scalability, or explore new market segment [7], [9].

Despite the existing studies on the topic of moderniza-
tion [7], [9], covering different strategies and aspects, there
still are some limitations and gaps in the state of the art
and practice: (i) proposed approaches are too specific for one
scenario or technology, without flexibility, making hard their
reusability or adaptation for different scenarios; (ii) most of
proposed approaches are not aligned with the modern software
development scenario, as there is no contemporaneous body
of knowledge on the fundamentals of software modernization;
and (iii) the existence of a myriad of different modernization
strategies, on one hand, offers a wide range of potential solu-
tions, however, on the other hand, such diversity of strategies
may misguide practitioners, providers, and researchers when
looking for solutions for specific situations.

The pieces of work that try to organize the existing studies
on software modernization have several limitations. They only
present an overview of the state of the art [8]; are based
on few case studies or a subset of existing literature [9],
[10], [11]; are outdated regarding current emerging/disruptive
technologies [2], [11], [12], [13]; partially cover the modern-
ization life cycle, and rarely take into account organizational,

operational, and technological aspects [7], [8]. As pieces of
work span across many years and focus on modernizing
for different purposes, there is a need for a discussion on
how these different modernization strategies can support the
contemporaneous software development.

In this work, our goal is to call the attention to the need of
advances in the research and practices towards software mod-
ernization in the light of contemporary software development.
The focus is to enable companies to preserved knowledge
represented in legacy systems while employing disruptive and
emerging technologies to benefit users. Based on that, we con-
textualize the different perspectives of software modernization
in the context of contemporary software development. Also,
we introduce a research agenda with 10 challenges to be taken
into account. The contribution is to motivate the discussion on
how to perform software modernization, avoiding practitioners
to adopt solutions because of popularity (hype) but that not fit
correctly in their scenarios.

II. BACKGROUND AND RELATED WORK

Seacord et al. [6] presented software modernization as a
remedy to face the legacy system crisis in the early 2000’s.
They discussed how to keep or add business value through
modern technologies, reducing operational costs, and dealing
with technical aspects, as for example, allowing better reuse
and easier maintenance [6]. However, their discussion is not
totally aligned with current technological and operational
advances of contemporary software engineering.

To decide for which modernization strategy to adopt, com-
panies should perform a portfolio analysis. Figure 1 presents
the portfolio analysis quadrant extended from Seacord et al. [6]
to bring a contemporaneous perspective of software modern-
ization. In addition to technical quality and business value
dimensions, which range from low to high, we introduced
innovation that is motivated by new disruptive and emerging
technologies, which is a driving force for the modernization.

The five quadrants presented in Figure 1 are:

• 1 Replace: legacy systems that have low business value
and low technical quality, i.e., accumulated technical
debt, should be replaced by new systems, using generic
solutions or off-the-shelf systems, instead of undergo for
a re-engineering or migration process.

• 2 Maintain: systems with high technical quality and low
business value should not require modernization effort,
but go thought traditional maintenance activities, just to
keep them operating and meeting customers need.

• 3 Evolve: high-quality legacies with high business value
should be actively evolved using traditional evolutionary
development practices for introducing new features, new
products, or even serving as third part for other systems.

• 4 Re-engineer: systems with high business value and
low technical quality should be re-engineered in order
to preserve business values, i.e., external quality, and
manage the technical debt, i.e., internal quality. This type
of modernization can be transparent to the final user.

2 Maintain
Security updates,

feature enhancements,
bug fixing.

4 Re-engineer
Preserve business

rules, improve
code quality, pay
technical debit.

3 Evolve
Extend the usage,

create new products,
external use.

1 Replace
Generic solutions,

off-the-shelf packages.

Low High

Lo
w

H
ig

h

Business value

Te
ch

ni
ca

l q
ua

lit
y

5 Migrate

Extend functionality,

leverage code,

benefit fro
m a

new technology.

New tech.

Innovation

Fig. 1. Extended quadrant of the portfolio analysis for the contemporary
software modernization, adapted from [14].

• 5 Migrate: when the system has high business value
and a company decide to include innovation with emerg-
ing/disruptive technologies, independently of system’s
technical quality, the migration to the desired new tech-
nologies should take place. This is, for example, the case
of companies that want to undertake digitalization.

In the literature, we can find several modernization strate-
gies to retain business value of legacy systems [8], [9].
For example, restructuring systems using components [15],
[16], [17], adoption of aspect-oriented development [18], [19],
[20], re-engineering of system variants into software product
lines [21], [22], [23], [24], migration to microservices [7], [25],
[26], [27], [28], [29], supporting new devices or pieces of
hardware, e.g., from single-core to multi-core machine [30],
[31], [32], and classical information systems to quantum
computing [33]. Even the software development process has
been modernized, e.g., DevOps [34], [35]. Also, modern-
ization has different driving forces and impacts related to
organizational, operational, and technological aspects. For
instance, the modernization can focus on, independence of
teams, optimizing deployment, easing innovation, facilitating
scalability, or exploring new market segment [7], [9].

Despite many studies, existing body of knowledge on soft-
ware modernization have several limitations: they only present
an overview of the state of the art [8]; are based on few
case studies or a subset of existing literature [9], [10], [11];
are outdated regarding current emerging/disruptive technolo-
gies [2], [11], [12], [13]; partially cover the modernization life
cycle, and rarely take into account organizational, operational,
and technological aspects [7], [8]. Furthermore, these studies
are limited on exploring contemporary needs, e.g., digital
transformation [8]. Finally, software modernization must be
seen as a multi-perspective activity, which is discussed next.

III. MULTI-PERSPECTIVE AND CHALLENGES

Based on the state of the art and practice, and our previous
work, we describe the multi-perspective of software modern-
ization in the context of contemporary software development.
Figure 2 presents six perspectives that affects the process of
modernizing a legacy system. These perspectives range from
understanding the legacy system, to conduct the transition
from the legacy (or part of) to the modern system. Based on

CONTEMPORARY
SOFTWARE

MODERNIZATION

LEGACY SYSTEM
- Large and complex

- Decayed architecture
- Obsolete technology

GOALS
- Systematic reuse

- Team independence
- Digital transformation

- New devices
- etc.

APPROACHES
- Microservices

- Software product lines
- Internet of Things
- Cloud computing

- etc.

TRANSITION
- Big bang

- Incremental
- Coexistence

TOOLS
- Visualization

- Repository mining
- SBSE
- etc.

ASPECTS
- Organizational

- Operational
- Technical

Fig. 2. Different perspectives of software modernization in the context of
contemporary software development.

this multi-perspective, needs, trends, and recent pieces of work
in the topic of software modernization, we present a list of
challenges (C) to be taken into account in future work.

C1: Lack of a comprehensive and contemporaneous body
of knowledge on software modernization. The pieces of
work that try to organize the existing body of knowledge on
software modernization have several limitations, as discussed
in Section II. Based on that, there is a need for a com-
prehensive and contemporaneous body of knowledge about
these modernization strategies. We do not have to reinvent
the wheel but organize existing knowledge on the light of
the perspectives presented in Figure 2 and the contemporary
software development.

C2: Recommend the right approach based on the modern-
ization goal. In Figure 2 we present examples of goals that
can serve as driving forces for the modernization. Based on
specific goals, some approaches could be more recommended
than others. However, this recommendation must be an in-
formed decision. The challenge here is to have guidelines to
support practitioners and companies on how to choose the
proper approach according to their goals, avoiding deciding
only based on the technologies in the “hype”. For example,
microservices has been advertised as a solution for technology
flexibility. However, a recent study has shown that this is
not the most common driving forces to migrate to microser-
vices [7]. Choosing the wrong approach can lead to frustrating
modernization. For example, systems migrated to microservice
going back to monolithic applications [36].

C3: Establish hybrid environments to allow the legacy and
modern parts of a system operating together. In Figure 2 we
can see the three types of transition: (i) big bang, a.k.a. cold
turkey [37], which is mainly the replacement of the legacy
system with a modern one (see Figure 1); (ii) incremental
modernization, following a strangler pattern [38], in which
parts of the legacy systems are incremental replaced by
modern parts [6], [7]; and (iii) the coexistence, in which

the practitioners do not want to modernize all the legacy,
then the legacy and modern parts still operate together in
the system [39]. The big bang and incremental transitions are
explored in literature, however, little is discussed on how to
establish a hybrid environment to allow the development and
coexistence of legacy and modern system.
C4: Consider technical, operational, and organizational
aspects during the modernization. The great majority of
studies on software modernization discusses the technical
aspects of the modernization [21], [26]. However, modern-
ization has different driving forces and impacts related to
organizational, operational, and technological aspects [6], [7],
[9], [14]. Software engineering involves technologies, people,
operations, and business strategy [40]. The challenge here is
to propose approaches that deal with all these aspects.
C5: Decide among replace, maintain, evolve, re-
engineering, or migrate. As presented in Figure 1, there are
different forms of modernization. Also, in Figure 2 we see that
the legacy systems can present different problem related to its
technical quality. Based on that, we can observe that choosing
how to modernize a legacy system is a multi-criteria decision.
Thus, companies need solutions to deal with this challenge.
C6: Support digital transformation. Digital Transformation
is currently a trend and have receiving great attention around
the world. For example, the Europe Union has the Digital
Europe Programme1, Australia has the Digital Economy Strat-
egy2, in North America the Canada Digital Adoption Program3

and the Digital Strategy4 of the United States, and in Asia 11
countries have joined forces in the Connecting Capabilities5.
Despite expected benefits, it is acknowledged that the digital
transformation is hampered legacy systems, processes, and
mindsets [5]. In this context, modernization is a mean to
leverage the digital transformation [5], [8]. However, there are
no guidelines on how to perform software modernization to
leverage digital transformation. Yet, the exiting few pieces of
work on this topic only provide a superficial overviews.
C7: Prepare the legacy for the modernization. When the
legacy system has a high business value, it is a candidate to
modernization by re-engineering or migration, independently
of its internal quality (see Figure 1). However, understanding
and modernizing a legacy system with poor internal quality
is a complex task. For example, systems usually evolve in
space, adding new features, and time, with feature being
revised [41], which make its comprehension difficult. For such
a situation, we believe that using refactoring strategies can be
a good way to improve the legacy internal quality to face the
modernization. However, the literature is scarce on how this
“pre-modernization” activity should take place.
C8: Propose non-intrusive approaches and tools. Practi-
tioners usually have preferences for using some technologies,

1https://digital-strategy.ec.europa.eu/en/activities/digital-programme
2https://digitaleconomy.pmc.gov.au/
3https://www.ic.gc.ca/eic/site/152.nsf/eng/home
4https://www.state.gov/digital-government-strategy/
5http://connectedfuture.economist.com/connecting-capabilities/

https://digital-strategy.ec.europa.eu/en/activities/digital-programme
https://digitaleconomy.pmc.gov.au/
https://www.ic.gc.ca/eic/site/152.nsf/eng/home
https://www.state.gov/digital-government-strategy/
http://connectedfuture.economist.com/connecting-capabilities/

tools, and workflows. Based on that, researchers should pro-
pose modernization approaches and tools that take into account
these preferences. In other words, as much as new approaches
and tools are non-intrusive to already adopted development
preferences, easier to transfer them to practice [42].
C9: Train workforce with skills for dealing with mod-
ernization. Figure 2 presented the different perspectives of
the software modernization. These several perspectives must
be considered to educate practitioners to operationalize the
modernization process [43]. Based on that, a challenge is
to training the workforce with expertise to deal with the
complexity of software modernization [33].
C10: Modernization for small and medium-sized enter-
prises (SMEs). In the literature we observe that some software
engineering activities should be conducted differently in the
context of SMEs [44], [45]. This might also be the case for
software modernization [46]. Based on that, research need to
be conducted to deal with challenges faced by SMEs when
modernizing their legacy systems in order to grow and be
more competitive.

IV. CONCLUSION

Software modernization is a fundamental activity of soft-
ware engineering, since inevitably requirements change, and
technology advances, and new business models emerge. De-
spite that, research on this topic has not been following the
modern software development, and legacy systems still remain
a problem. To fill this gap and to sparkle the discussion on this
topic, we present a discussion of software modernization in the
light of contemporary software modernization. We revisited
some pieces of work and introduce the multi-perspective of
contemporary software modernization. Based on that, in this
work we discussed 10 challenges to motivate and guide to new
studies.

DISCLAIMER

This is a non peer-reviewed paper. All text and ideas
discussed in this document are responsibility of the author.
To cite this paper, please use this bibtex: https://wesleyklewer
ton.github.io/publications/SoftwareModernization.bib

REFERENCES

[1] K. Bennett, “Legacy systems: coping with success,” IEEE Software,
vol. 12, no. 1, pp. 19–23, jan 1995.

[2] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage, “How
do professionals perceive legacy systems and software modernization?”
in 36th International Conference on Software Engineering, 2014, pp.
36–47.

[3] GAO, Information Technology: Agencies Need to Develop Moderniza-
tion Plans for Critical Legacy Systems, 2019, https://www.gao.gov/pr
oducts/gao-19-471.

[4] R. Morris, Keeping old computers going costs government £2.3bn a year,
says report, 2021, https://www.bbc.com/news/uk-politics-58085316.

[5] D. Beach, Legacy systems push up costs of digital transformation, 2019,
https://www.theglobaltreasurer.com/2018/09/27/legacy-systems-push-
up-costs-of-digital-transformation/.

[6] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business
Practices. USA: Addison-Wesley, 2003.

[7] D. Wolfart, W. K. G. Assunção, I. F. da Silva, D. C. P. Domingos,
E. Schmeing, G. L. D. Villaca, and D. d. N. Paza, “Modernizing
legacy systems with microservices: A roadmap,” in 25th Evaluation and
Assessment in Software Engineering (EASE). ACM, 2021, p. 149–159.

[8] P. L. Leon and F. E. A. Horita, “On the modernization of systems for
supporting digital transformation: A research agenda,” in XVII Brazilian
Symposium on Information Systems, 2021, pp. 1–8.

[9] S. Strobl, M. Bernhart, and T. Grechenig, “Towards a topology for
legacy system migration,” in IEEE/ACM 42nd International Conference
on Software Engineering Workshops, 2020, pp. 586–594.

[10] A. M’baya, J. Laval, and N. Moalla, “An assessment conceptual frame-
work for the modernization of legacy systems,” in 11th International
Conference on Software, Knowledge, Information Management and
Applications. IEEE, 2017, pp. 1–11.

[11] A. F. Iosif-Lazar, A. S. Al-Sibahi, A. S. Dimovski, J. E. Savolainen,
K. Sierszecki, and A. Wasowski, “Experiences from designing and vali-
dating a software modernization transformation (e),” in 30th IEEE/ACM
International Conference on Automated Software Engineering. IEEE,
2015, pp. 597–607.

[12] T. C. Fanelli, S. C. Simons, and S. Banerjee, “A systematic framework
for modernizing legacy application systems,” in 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
vol. 1. IEEE, 2016, pp. 678–682.

[13] R. Khadka, P. Shrestha, B. Klein, A. Saeidi, J. Hage, S. Jansen, E. van
Dis, and M. Bruntink, “Does software modernization deliver what it
aimed for? a post modernization analysis of five software modernization
case studies,” in International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2015, pp. 477–486.

[14] R. Seacord, S. Comella-Dorda, G. Lewis, P. Place, and D. Plakosh,
“Legacy system modernization strategies,” Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU/SEI-2001-TR-025, 2001. [Online]. Available: http://resources.sei.
cmu.edu/library/asset-view.cfm?AssetID=5729

[15] C.-C. Chiang and C. Bayrak, “Legacy software modernization,” in IEEE
International Conference on Systems, Man and Cybernetics, vol. 2, 2006,
pp. 1304–1309.

[16] B. A. Ekanem and E. Woherem, “Dealing with components reusability
issues as cutting-edge applications turn legacy,” in SAI Computing
Conference (SAI). IEEE, 2016, pp. 1190–1198.

[17] A. Khalilipour, M. Challenger, M. Onat, H. Gezgen, and G. Kardas,
“Refactoring legacy software for layer separation,” International Journal
of Software Engineering and Knowledge Engineering, vol. 31, no. 02,
pp. 217–247, 2021.

[18] A. M. AlSobeh and A. A. Magableh, “An aspect-oriented with bip
components for better crosscutting concerns modernization in iot ap-
plications,” in CS & IT Conference Proceedings, vol. 8, no. 12. CS &
IT Conference Proceedings, 2018.

[19] S. Rizvi, Z. Khanam, and J. M. Islamia, “A comparative study of using
object oriented approach and aspect oriented approach for the evolution
of legacy system,” International Journal of Computer Applications, vol.
975, p. 8887, 2010.

[20] N. Goel, “Legacy systems towards aspect-oriented systems,” in Achiev-
ing Enterprise Agility through Innovative Software Development. IGI
Global, 2015, pp. 262–286.

[21] W. K. G. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio,
and A. Egyed, “Reengineering legacy applications into software product
lines: a systematic mapping,” Empirical Software Engineering, vol. 22,
no. 6, pp. 2972–3016, feb 2017.

[22] J. Åkesson, S. Nilsson, J. Krüger, and T. Berger, “Migrating the
android apo-games into an annotation-based software product line,”
in 23rd International Systems and Software Product Line Conference
- Volume A, ser. SPLC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, pp. 103–107. [Online]. Available:
https://doi.org/10.1145/3336294.3342362

[23] J. Krüger, W. Mahmood, and T. Berger, “Promote-pl: A round-trip
engineering process model for adopting and evolving product lines,”
in 24th ACM Conference on Systems and Software Product Line:
Volume A - Volume A, ser. SPLC ’20. New York, NY, USA:
Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3382025.3414970

[24] W. K. G. Assunção, J. Krüger, and W. D. F. Mendonça, “Variability
management meets microservices: Six challenges of re-engineering
microservice-based webshops,” in 24th ACM Conference on Systems
and Software Product Line: Volume A - Volume A, ser. SPLC ’20.
New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3382025.3414942

https://wesleyklewerton.github.io/publications/SoftwareModernization.bib
https://wesleyklewerton.github.io/publications/SoftwareModernization.bib
https://www.gao.gov/products/gao-19-471
https://www.gao.gov/products/gao-19-471
https://www.bbc.com/news/uk-politics-58085316
https://www.theglobaltreasurer.com/2018/09/27/legacy-systems-push-up-costs-of-digital-transformation/
https://www.theglobaltreasurer.com/2018/09/27/legacy-systems-push-up-costs-of-digital-transformation/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5729
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5729
https://doi.org/10.1145/3336294.3342362
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1145/3382025.3414942

[25] L. Carvalho, A. Garcia, W. K. G. Assunção, R. de Mello, and M. J.
de Lima, “Analysis of the criteria adopted in industry to extract microser-
vices,” in 7th International Workshop on Conducting Empirical Studies
in Industry and 6th International Workshop on Software Engineering
Research and Industrial Practice. IEEE, 2019, pp. 22–29.

[26] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microser-
vice architectures: an industrial survey,” in International conference on
software architecture. IEEE, 2018, pp. 29–2909.

[27] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges of
microservices: an exploratory study,” Empirical Software Engineering,
vol. 26, no. 4, may 2021.

[28] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[29] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49, 2018.

[30] S. M. Salman, A. V. Papadopoulos, S. Mubeen, and T. Nolte, “A
systematic methodology to migrate complex real-time software systems
to multi-core platforms,” Journal of Systems Architecture, vol. 117, p.
102087, 2021.

[31] V. T. R and A. A. Chikkamannur, “A methodology for migration of
software from single-core to multi-core machine,” in 2016 International
Conference on Computation System and Information Technology for
Sustainable Solutions (CSITSS), 2016, pp. 367–369.

[32] C. Norton, C. Zuffada, O. Kalashnikova, and V. Decyk, “Challenges in
modernizing legacy scientific software,” in AGU Fall Meeting Abstracts,
vol. 2008, 2008, pp. IN11A–1016.

[33] R. Pérez-Castillo, M. A. Serrano, and M. Piattini, “Software
modernization to embrace quantum technology,” Advances in
Engineering Software, vol. 151, p. 102933, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0965997820309790

[34] N. Bommadevara, A. Del Miglio, and S. Jansen, “Cloud adoption to
accelerate it modernization,” Digitial McKinsey: Insights, 2018.

[35] R. Cherinka, S. Foote, J. Burgo, and J. Prezzama, “The impact of agile
methods and “devops” on day 2+ operations for large enterprises,” in
Intelligent Computing, K. Arai, Ed. Cham: Springer International
Publishing, 2022, pp. 1068–1081.

[36] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, “The monolith
strikes back: Why istio migrated from microservices to a monolithic
architecture,” IEEE Software, vol. 38, no. 5, pp. 17–22, 2021.

[37] Comella-Dorda, Wallnau, Seacord, and Robert, “A survey of black-box
modernization approaches for information systems,” in International
Conference on Software Maintenance, 2000, pp. 173–183.

[38] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices
migration in industry: Intentions, strategies, and challenges,” in Inter-
national Conference on Software Maintenance and Evolution. IEEE,
2019, pp. 481–490.

[39] P. Robertson, “Integrating legacy systems with modern corporate
applications,” Commun. ACM, vol. 40, no. 5, p. 39–46, May 1997.
[Online]. Available: https://doi.org/10.1145/253769.253785

[40] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[41] G. K. Michelon, W. K. G. Assunção, D. Obermann, L. Linsbauer,
P. Grünbacher, and A. Egyed, “The life cycle of features in highly-
configurable software systems evolving in space and time,” in 20th
ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. ACM, 2021.

[42] C. H. Costa, P. H. M. Maia, N. C. Mendonça, and L. S. Rocha,
“Supporting partial database migration to the cloud using non-intrusive
software adaptations: An experience report,” in Advances in Service-
Oriented and Cloud Computing, A. Celesti and P. Leitner, Eds. Cham:
Springer International Publishing, 2016, pp. 238–248.

[43] K. Prokofyev, O. Dmitrieva, T. Zmyzgova, and E. Polyakova, “Modern
engineering education as a key element of russian technological mod-
ernization in the context of digital economy,” in International Scientific
Conference “Far East Con”(ISCFEC 2018) Advances in Economics,
Business and Management Research, vol. 47, 2019, pp. 652–656.

[44] M.-L. Sánchez-Gordón, R. Colomo-Palacios, A. de Amescua Seco,
and R. V. O’Connor, The Route to Software Process Improvement in
Small- and Medium-Sized Enterprises. Cham: Springer International
Publishing, 2016, pp. 109–136.

[45] I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S.
de Almeida, and S. R. de Lemos Meira, “Software product line
scoping and requirements engineering in a small and medium-
sized enterprise: An industrial case study,” Journal of Systems
and Software, vol. 88, pp. 189–206, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121213002598

[46] B. Althani, S. Khaddaj, and B. Makoond, “A quality assured framework
for cloud adaptation and modernization of enterprise applications,” in
2016 IEEE Intl Conference on Computational Science and Engineering
(CSE) and IEEE Intl Conference on Embedded and Ubiquitous Com-
puting (EUC) and 15th Intl Symposium on Distributed Computing and
Applications for Business Engineering (DCABES), 2016, pp. 634–637.

https://www.sciencedirect.com/science/article/pii/S0965997820309790
https://doi.org/10.1145/253769.253785
https://www.sciencedirect.com/science/article/pii/S0164121213002598

	Introduction
	Background and Related Work
	Multi-perspective and Challenges
	Conclusion
	References

