
Model-based Testing for a Family of Mobile Applications:
Industrial Experiences

Stefan Fischer
Rudolf Ramler

Software Competence Center
Hagenberg GmbH (SCCH), Austria

Wesley K. G. Assunção
Alexander Egyed

Johannes Kepler University Linz
Austria

Christian Gradl
Sebastian Auberger

hello again GmbH, Austria

ABSTRACT
Testing is a fundamental verification activity to produce high-
quality software. However, testing is a costly and complex activity.
The success of software testing depends on the quality of test cases
but finding a good set of test cases is laborious. To make matters
worse, when dealing with a family of systems (e.g., variants of a
mobile applications), test cases must assure that a diversity of con-
figurations in potentially many variants work as expected. This
is the case of hello again GmbH, a company that develops mobile
applications for customer loyalty (e.g., discounts, free products,
rewards, or insider perks). The company targets several business
domains, and currently supports about 700 application variants.
Testing such applications including all their variability is a cumber-
some task. Even simple test cases designed for one variant most
likely cannot be reused for other variants. To support developers
at hello again GmbH, we present a solution to employ a model-
based testing approach to their family of mobile apps. Model-based
testing focuses on automatizing the design and generation of test
cases. We present results of applying model-based testing on 27
applications from hello again GmbH and report the challenges and
lessons learned for designing a variable test model. Our expected
contribution is to support companies and practitioners looking for
solutions to test families of software products.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Software Product Lines, Variability Testing, Mobile Testing

ACM Reference Format:
Stefan Fischer , Rudolf Ramler , Wesley K. G. Assunção , Alexan-
der Egyed , Christian Gradl, and Sebastian Auberger. 2023. Model-based
Testing for a Family of Mobile Applications: Industrial Experiences. In Pro-
ceedings of 27th International Systems and Software Product Line Conference
(SPLC’23). ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.
XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’23, August 28–September 1, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Testing is a fundamental activity to verify the quality of software
products. However, testing is also a complex and time-consuming
activity, consuming up to 40% of the overall development cost [20].
One challenge for testing software properly is to find a good set of
test cases [6]. To support engineers in this task, model-based testing
automates the design, generation, and optionally the execution of
test cases [43]. In model-based testing, a test model represents the
behavior of a software system under test, which is the basis for the
generation of test cases [16].

The use of model-based testing for testing a single software
product is widely observed in the literature and in practice [1, 23, 29,
43]. However, companies rarely develop one single product. Instead,
they usually develop families of software products, in which each
variant is customized/configured for a different client of a market
segment [8]. Additionally, companies frequently allow users to
tailor their system variants to specific scenarios [34]. In the context
of model-based testing, dealing with families of software products
is challenging, as the test model has to express variability and adapt
to the characteristics of the different variants under verification.

Our industry partner, hello again GmbH, experiences that sce-
nario and challenges described above. The company operates in the
customer loyalty segment, developing mobile applications (apps
for short) that offer discounts, free products, rewards, or insider
perks. Due to the success of theirs apps, the company currently
supports app variants for about 700 business clients in different
domains. However, the testing activity for the family of apps at
hello again GmbH is challenging. Because of the variability among
the app variants, test cases designed for one app most likely will
not execute correctly on other variants, making a direct reuse of
test cases between variants infeasible. Existing research has shown
promising results in automatically reusing test variants for different
configuration [17, 19]. However, no such test variants are available
at hello again. Additionally, when test cases fail, developers have a
hard time figuring out the variant-specific causes of the problem
and which of the variants are affected. Due to these challenges most
testing of the applications was done manually and automation only
available to test some apps and use cases.

To overcome the challenges of testing a family of mobile apps
at hello again GmbH, we proposed a model-based testing solution,
which can automatically adapt the model for different variants with-
out any furthermanual intervention. Mode-based testing has shown
promising results for testing families of software products [36].
The goal of this paper is to present our solution and report our
experiences (i.e., challenges and lessons learned) when applying
model-based testing mobile app variants.

https://orcid.org/0000-0002-4715-3384
https://orcid.org/0000-0001-9903-6107
https://orcid.org/0000-0002-7557-9091
https://orcid.org/0000-0003-3128-5427
https://orcid.org/0000-0002-4715-3384
https://orcid.org/0000-0001-9903-6107
https://orcid.org/0000-0002-7557-9091
https://orcid.org/0000-0003-3128-5427
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SPLC’23, August 28–September 1, 2023, Tokyo, Japan Fischer et al.

Our solution relies on the page object pattern to represent app
screens as classes [31], and the OSMO tool to design, generate, and
execute the test cases [27]. However, we extended the OSMO tool
to be flexible regarding the agility of mobile development, i.e., to
cope with new screens in apps that are not yet defined in the test
models. Additionally, we adapted OSMO’s algorithms to explore
the test model, improving the scalability when testing variants with
many screens. Another benefit of our solutions is that, while most
of the existing tools for mobile testing focus on Android and only
few on iOS [42], our solution works for both platforms.

We performed an evaluation of our proposed solution to eval-
uate if our model works on different variants and especially the
generated model parts can be used to navigate arbitrary screen
links. Our evaluation relies on a set of 27 app variants developed at
hello again GmbH. We computed several metrics of the test models
and the variants under test. Then, we answer research questions
related to: (i) how variable are the apps of our industry partner,
(ii) whether our model-based testing solution works for the given
set of app variants, (iii) how our model performs with different
strategies for dealing with variability, and (iv) what improvement
can be achieved by our adaptations to the OSMO tool.

The results of the evaluation show a high variability in the family
of mobile applications regarding the number and type of screens.
Nevertheless, we were able to develop a model-based test solution
that works for most apps of the entire family (23 out of 27 app
variants) without the need of any further adaptation. We were able
to generate large parts of the test model from the configuration
specification, saving engineers the effort and time needed to im-
plement these parts manually. Finally, we were able to show the
usefulness of our adaptions to OSMO’s algorithms, which lead to
an average improvement of 73.8% in the length of generated tests.

2 BACKGROUND AND RELATEDWORK
This section overviews the main concepts used in our work, namely
variability, model-based testing, and mobile app testing.

Software Variability. Variability is a property that enables a soft-
ware system, software asset, or development environment to be
configured, customized, or adapted for specific contexts [8]. Such a
customization can be performed by developers during the software
development. For instance, by using variability, engineers may de-
lay design decisions to later stages of the development process, or
to the runtime [24, 41]. Furthermore, end users can benefit from
variability to make the software products suit their needs and pref-
erences. Thus, the customization of software products is the basis
for creating families of related software systems [7, 26].

Model-Based Testing. Software testing consists of three stages:
(i) design/generation of test cases, (ii) execution of such test cases,
and (iii) derivation of verdicts [38]. Model-based testing (MBT) can
support the two first stages, by generating test cases from a model
describing the system under test, or by generating and executing
test cases simultaneously, in online MBT [44]. MBT has three key
elements: (i) the model used to describe the software behavior,
(ii) the test-generation algorithm, and (iii) the tools that gener-
ate supporting infrastructure for the tests. Different notations to

define a test model have been proposed, such as Activity-based no-
tations (Flowcharts, BPMN, or UML activity diagrams), state-based
(or pre/post) notations, transition-based notations (UML State Ma-
chines or labeled transition systems), decision tables, and stochastic
notations [44]. Moreover, models can be expressed in different rep-
resentations, like Graphs in GraphWalker1 or Java code in OSMO2.

MBT tools can improve testing practices by increasing the effec-
tiveness of the tests, shortening the testing cycle, and reducing the
cost of test generation [12]. However, as for many software engi-
neering activities, adding variability to MBT increases complexity
and introduces additional challenges [37]. For a test model to be
able to test any arbitrary variant of an SPL, the model has to adapt
to the tested variant. Such a model is often referred to as a 150%
model in literature [15, 22].

Mobile app testing. A systematic review reports studies on GUI
testing of mobile apps [40]. The authors found that the most com-
mon testing approach for apps is model-based testing and the ma-
jority of approaches focused on functional testing, which is also
the focus of our work. Over the past decade, numerous approaches
to test mobile applications have been proposed. Most of them focus
on automatically exploring the GUI of Android applications with
different strategies such as search-based [33] or other systematic
approaches [2, 5]. Other approaches explore the GUI and learn
models from it, using such models for testing [3, 9, 32]. There are
also approaches that generate tests using a record and replay ap-
proach [21, 25]. Another study reported experiences of model-based
testing of mobile apps in the industry [28]. The authors of this study
designed a test model to generate random test sequences that were
applied to test apps. Similar to our work, they modelled test steps
grouped by the test feature. However, variability and automatically
generating model parts and adapting to different configurations
was out of the scope of their work. There exist some freely avail-
able tools for automated mobile UI testing, like the Android Debug
Bridge’s UI/Application Exerciser Monkey3 or App Crawler4, or
Robo Test5 by Google. These automated testing tools have the com-
mon issues, namely missing a test oracle and finding only limited
faults, like for robustness testing or regression testing. Additionally,
none of the tools or approaches described above target variability.

MTB for families of software products. There are studies taking
into account variability in test cases [36]. For instance, Arrieta et
al. [4] present an MBT methodology for highly configurable cyber-
physical systems. Their methodology relies on a Feature Model to
semi-automatically generate test cases for a Simulink model, which
derives 100% of the test architecture. Fischer et al. [18] investigates
the difference between the automated reuse of test variants and test
model variants. However, their work does not focus on creating a
reusable test model, but rather on the reuse and adaption of existing
tests for different configurations.

There are studies focusing on MBT for families of software prod-
ucts. For instance, Reuys et al. [39] propose a technique called
ScenTED, which is a model-based and reuse-oriented technique for

1http://graphwalker.github.io/
2https://github.com/osmo-tool/osmo
3https://developer.android.com/studio/test/other-testing-tools/monkey
4https://developer.android.com/studio/test/other-testing-tools/app-crawler
5https://firebase.google.com/docs/test-lab/android/robo-ux-test

http://graphwalker.github.io/
https://github.com/osmo-tool/osmo
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/app-crawler
https://firebase.google.com/docs/test-lab/android/robo-ux-test

Model-based Testing for a Family of Mobile Applications: Industrial Experiences SPLC’23, August 28–September 1, 2023, Tokyo, Japan

test case derivation. Test case scenarios are derived from test models
represented by activity diagrams, and the test cases are specified by
sequence diagrams. Both diagrams have as prerequisite variation
points encoded in them to allow deriving test case scenarios for dif-
ferent configurations. MBT activities such as defining test coverage,
generation, and prioritization [30] can be used, for instance, for the
quality assurance of a safety-critical system family of products as
presented by Classen et al. [10]. They propose a model checking
built on the featured transition systems [11], which is a compact
mathematical model for representing the behavior of the family
products. This model is used to represent the behavior of a product
when building the assets from which products are derived. Fischer
et al. [16] conducted a comparative study of different variability
mechanisms, namely preprocessor directives and feature toggles,
to encode variability in test models. As a result, the work presents
the advantages and disadvantages of each mechanism.

In a recent mapping study, Petry et al. [36] analyzed 44 studies of
MBT for SPLs. They found out that most studies take into account
variability in models to be tested. For instance, UML models can be
annotated with stereotypes that map a relationship between a given
feature and its corresponding test models and implementation [14].
Although there are some studies about MBT for system families, to
the best of our knowledge there is no study on MBT in the context
discussed in this paper.

3 INDUSTRY CONTEXT
Our industry partner, hello again GmbH6, develops apps to improve
customer loyalty for a wide range of businesses. The apps offer
features like different vouchers or events to purchase products
or services at discounts. Moreover, the apps can be used to track
purchase frequency of customers and reward their loyalty with
different bonuses. Currently, they support app variants for about
700 client businesses. To be able to server such a large customer
base over different domains, the apps are developed with reuse and
variability in mind. The configuration process is supported by a
no-code App builder. Moreover, the company offers a control center
in the background that allows businesses define events and rewards
that are offered at a time. Besides that, this Customer API allows the
businesses to configure parts of their apps. The apps are customized
in different ways:
(1) Selecting features like offering different vouchers/contests, or

the login methods (e.g., via email, Google, Facebook, Twitter)
using the App builder and the Customer API. This includes pro-
viding screens to access the features and configurations in the
background, managing the type of rewards, which influences
the interaction with associated screens.

(2) Available screens in the app, selected from a large set of pre-
defined screens, via the App builder. Furthermore, the screens
themselves are configurable with different options, like the
availability of a search feature in a long list of elements. This
configuration is done on individual screens, not necessarily
equal over all screens in the app variant.

(3) Navigation between screens via tab bars, drawer menus, icon
grid menus, or screens with lists of links which again supports

6https://www.hello-again.com/en/

different list types that may have to be interacted with differ-
ently, via the App builder.

(4) Dynamic screens that can be configured by the customer through
a backend API to select pre-defined components that can be
displayed, via the App builder and Customer API. These com-
ponents include a configurable text displayed on the screen, a
button to logout from the app, links to other screens, and many
more.

(5) General app design (i.e., look and feel) to fit with customer’s
corporate design, done manually for each app variant.
This extensive variability is challenging for testing the app vari-

ants, since test cases defined for one variant might not work for
other variants. Thus, the goal of our collaboration is to create a test
model that can automatically test each app variant created from their
family of apps built with the App builder and configuration through
the Customer API. Each app should be tested before deployment,
to ensure all screens are reachable and properly displayed, and
features are properly supported and working.

4 MODEL-BASED TESTING SOLUTION
The mobile applications are configured using different mechanisms,
more static configuration with the no-code App builder and more
dynamic configuration, including after deployment, using the Cus-
tomer API. From the configuration with the App builder we get a
configuration file, as a specification of the app variant, containing
all app screens, components within these screens, and their config-
urations, like links between screens. One of the main parts of the
configuration we are focusing on are shortcuts, which is how links
to other screens are implemented and configured. We show an ex-
ample snippet of such a configuration file in Listing 1. Each element
has a unique identifier (see Line 2), as well as a canonical name that
specifies which screen type the current instance is of. The example
in Listing 1 shows part of the configuration of the main navigation
mode through the app. In this case, the main navigation is done
via a tab bar with buttons at the bottom of the screen that link to
the configured screens. The links to other screens are configured in
’relationships’.’children’.’data’ with the unique identifier
of the target screens in the configuration file.

</>

Algorithm

End condition

Generate Model Classes

Parse Configuration

Select Coded Model Classes

Execute OSMO Model

App
Configuration

Configuration
file

(App builder)
Customer API

Template
Engine

Generated
Model Classes

Template
files

Hard-Coded
Model Classes

Coded
Models

Select
Models

OSMO
Execution

Engine

Configurable page objects

1

2

3 4

Figure 1: Workflow of generating, selecting, and executing
the test model

https://www.hello-again.com/en/

SPLC’23, August 28–September 1, 2023, Tokyo, Japan Fischer et al.

Listing 1: Snippet of main navigation configuration.
1 {'type ': "core.shortcuts",
2 'id ': "5d5d118cd6b0440677556beb",
3 'attributes ': {
4 'canonicalName ': "navigation.icons",
5 'title ': "Main navigation",
6 'screen ': "navigation.TabBar",
7 'screens ': [{
8 'canonicalType ': "navigation.TabBar",
9 'canonicalName ': "navigation.TabBar",

10 'settings ': { ... }
11 }],
12 'settings ': { ... }
13 },
14 'relationships ': { 'children ': { 'data ': [{
15 'type ': "core.shortcuts",
16 'id': "5d5d124fd6b0440677556bed"
17 },{
18 'type ': "core.shortcuts",
19 'id': "6364 c133e94f113b71f79340"
20 }, ...
21] } }
22 },

Due to the variety of configuration mechanisms used in the
app building process, we likewise included different variability
mechanisms in our test model. To test navigation between screens
defined with the configuration file we generated model parts with
a template engine, while for other configuration options we use
run-time checks. Figure 1 shows the workflow from generating the
model to executing it, calling page objects to interact with the app
screens.

4.1 Page objects
For developing our tests, we used the page object pattern, where
each screen in the applications is represented by a Java class [31].
This class contains the necessary logic to interact with the asso-
ciated screen. An example of such a page object is depicted in
Listing 2. In the page objects, we utilize Appium7 to interact with
the mobile applications.

To be able to robustly identify widgets on the screens, we in-
troduced IDs in the app source code. We use these IDs in the page
objects to identify and interact with the widgets in any application
variant. Moreover, we added IDs to each screen consisting of the
canonical name and the unique identifier from the configuration
file to enable a clear identification of screen instances. Similarly,
for links that are specified in the configuration file, we added IDs
containing their unique identifier in the configuration file. The apps
should be consistent independent of the OS, and we use a class
Helper (see Lines 10 and 13 in Listing 2) to retrieve elements from
the UI, which takes care of different requests from the OS specific
automation frameworks used in Appium. However, for some IDs
we still have inconsistencies between Android and iOS, which we
deal within the page objects (see Line 3 in Listing 2, where the
screen ID is different for the two OS).

Each page object extends an abstract parent page object, which
we pass an ID to the constructor that is used to verify if the correct
screen is displayed in the app. We also use the page objects to verify
whether all the expected elements are shown on the corresponding
screen. Therefore, we can define a test oracle directly with the
page objects for each screen. For this, the abstract parent class

7https://appium.io/

contains themethods verify and verifyOnce to check if the screen
is displayed correctly. The first method is called every time the
screen is reached, for checks like making sure the screen ID is
present. The second method is called only the first time we reach
the screen in an execution, to avoid time intensive checks over and
over, like checking if all links in a long list are present or costly
screenshot comparisons. These to methods can perform different
checks related to the screen and are part of the test oracle. If a check
fails, then an exception is raised to alert an engineer about an issue.

Listing 2: Snippet of a page object implementation.
1 @Screen(canonicalName="seblau.auth.EmailLoginScreen")
2 public class EmailLoginPage extends AbstractPage {
3 final String SCREEN_ID = AppiumSetup.PLATFORM == OS.

IOS ? "screen.login.email" : "screen.login";
4
5 final String EMAIL_ID = "auth.input.email";
6 final String PASSWORD_ID = "auth.input.password";
7 final String LOGIN_BUTTON_ID = "auth.input.login";
8
9 public EmailLoginPage(AppiumDriver driver) {

10 this(driver , Helper.getResourceIdSelector(
SCREEN_ID));

11 }
12 public WebElement getEmailField (){
13 return driver.findElement(Helper.

getResourceIdSelector(EMAIL_ID));
14 }
15 ...
16 public AbstractPage login(User user){
17 getEmailField ().sendKeys(user.getEmail ());
18 getPasswordField ().sendKeys(user.getPassword ());
19 if(AppConfig.rememberMeCheckboxEnabled ())
20 getRememberMeCheckbox ().click();
21 getLoginButton ().click();
22 return determineStartPage ();
23 }
24
25 protected void verify ();
26 protected void verifyOnce ();
27 }

Additionally, we required a mapping of the page objects to the
screen they are associated with. For this, we introduced a Java
annotation for each page object (see Line 1 in Listing 2) that specifies
the canonical name of the screen also used in the configuration file.
In our example in Listing 2, we implement the interaction with the
login screen via email address. The start screen that is displayed
after login is specified in the configuration file. Therefore, we need
to create an instance of the correct page object, corresponding to
the start screen, after logging in. We use the Java annotation for
the page object classes for this, to identify the correct class for the
current screen. Then, we simply create an instance of this class
using Java reflection and the page object subsequently verifies if
the correct screen is displayed and checks in the verify methods
are performed.

Finally, the page objects need to be able to interact with the
screen in different configurations. This is even more complicated
because there can be multiple instances of the same screen type in
one app, all using different configurations. Therefore, configuration
options are implemented in the page object, using condition execu-
tionwith if statements. For example, Line19 in Listing 2 checks if the
screen in the current variant contains an optional checkbox to stay
logged in to the app, even after restarting it, which the test should
click. This variability mechanism allows us to dynamically react to

https://appium.io/

Model-based Testing for a Family of Mobile Applications: Industrial Experiences SPLC’23, August 28–September 1, 2023, Tokyo, Japan

the configuration on the current screen with one implementation
of the page object.

4.2 The OSMO model
For model-based testing of the family of mobile apps, we chose
OSMO.2 Compared to other MBT tools, it does not require pre-
defined system states to be modeled, like a state machine where
the test execution transitions lead from one pre-defined state to
another. Rather, OSMO uses guard conditions that specify if a test
step can be executed at a certain app state (like in Listing 3 for the
login via email). This guard can use any arbitrary data to determine
if the associated steps can be executed or not. These more dynamic
guards, which work more stateless than other MBT approaches, are
the main reason for us to choose OSMO over other tools.

Listing 3: Snippet of a OSMO test model.
1 public class LoginLogoutModel extends AbstractModel {
2 public LoginLogoutModel(State state) {
3 super(state);
4 }
5
6 @TestStep("loginWithEmail")
7 public void loginWithEmail () {
8 User user = state.getRandomUser ();
9 AbstractPage startPage ((EmailLoginPage)state.

currentPage ()).login(user);
10 state.setCurrentPage(startPage);
11 state.setCurrentUser(user);
12 }
13 @Guard("loginWithEmail")
14 public boolean loginWithEmailGuard () {
15 return state.currentPage () instanceof

EmailLoginPage;
16 }
17 }

We implement these test steps over different model classes and
group them by the executed feature or use case, like test steps to
log in. Not only does this help with comprehending the model, but
also allows us to exclude models for features that are not available
in the tested variant, like logging in with Facebook. OSMO requires
us to instantiate the model classes and pass them in a factory class.
We can therefore simply avoid instantiating the classes not relevant
for the current variant.

During test execution, OSMO checks the guards of all available
test steps, and an execution algorithm selects the next test step to
execute, from the ones with guards that returned true. To make
these executions reproducible, we use seeds for all random parts
of the test executions that can be configured to make all decisions
the same way again. Moreover, we record all test steps that are
executed in a test execution in a file, which we can replay again
and reproduce the same test scenario and for debugging.

4.3 Generating model parts
The configuration file specifies the links between screens. For in-
stance, screens which are reached via the tab bar at the bottom of
the screen can be freely configured to any screen in the app (see
Listing 1). Moreover, we can adjust the number of links on a screen.
To test this unrestricted configurability, we opted to generate model
parts for this behavior, based on the configuration file.

The test model generation process is depicted in Figure 1. It
uses the configuration file and locates the configuration of certain

screen types and components from there. From this configuration,
we generate unique test step names based on the titles of the source
and target screens. Additionally, the generated test steps include,
hard coded, the unique screen ID from the configuration file. We
use these IDs to determine the screen that has to be shown after
executing the test step and the corresponding page object that is
loaded.

4.4 Dynamic screen components
The app variants contain configurable screens that can be cus-
tomized by the businesses themselves. This is done via a backend
Customer API that allows to select and configure components that
should be displayed on the screens. Some of such components are
customizable text, a button to logout, a list of rewards for customer
loyalty, a list of links to other screen, and many more. When the
app reaches such a configurable screen, our test model loads the
corresponding page object. This page object dynamically checks
which components are configured for the current screen. Then, the
page object loads corresponding component objects that implement
the interaction with the specific components, similar to a page ob-
ject for a screen, as shown in Listing 4. The correct component
object is selected by a component name specified in the class with
a Java annotation, as in the canonical names of screens for page
objects. Like the page objects these component objects contain a
method verify that can be used to implement specific checks for
this component and is used as part of the test oracle.

Listing 4: Snippet of a component object implementation.
1 @ScreenComponent(name = "TextComponent")
2 public class TextComponent extends Component{
3 public TextComponent(AppiumDriver driver , String id,

GenericScreen screen) {
4 super(driver , id, screen);
5 }
6
7 @Override
8 public void verify(GenericScreen screen) {
9 // Compare the displayed and configured text.

10 }
11 }

4.5 Exploration of un-modeled parts
The development of the app family is ongoing and screens are being
added. Since for new screens or very rare screens we may not have
page objects developed yet, the test model could run into a dead-
end from where it can not continue. If we reach such an unknown
screen, no test step is defined to deal with it. To circumvent this,
we added an automatic exploration mode that tries to get back to
app parts that are modeled. This mode is entered by a test step with
a guard method that checks if we could not recognize the current
screen and if no other test step is available. During this automated
exploration, elements on the screen are clicked randomly and the
device specific navigate back functionality is tried randomly. After
each such action, we try to identify the screen we are currently
on, by checking if any of the screen IDs from the configuration file
are present. If there is a page object implemented for this screen,
identified by the Java class annotation, the automated exploration
mode stops execution and the test step ends, which means OSMO
can continue with other test steps available for the current screen.

SPLC’23, August 28–September 1, 2023, Tokyo, Japan Fischer et al.

For all test executions we implemented a configurable timeout that
will end the test with an error message. Therefore, if the automated
exploration does not find a way to enter a modeled screen the test
will timeout and cannot get stuck in endless loops.

4.6 Other OSMO adaptations
We made some additional adaptations to OSMO to better meet our
test goal and requirements.

Custom end conditions. OSMO allows setting end conditions
for testing, which end the test if it is fulfilled. One goal for our
tests is to reach all screens in any app variants through automated
tests. The standard end conditions of OSMO could not guarantee
this. Therefore, we developed our own end condition that checks if
all screens reachable with a shortcut were reached in the current
test execution. To recognize the screen we are currently on, we
use the current page object and the screen IDs that were added in
the apps. We implemented the identifier of the current screen as a
OSMO coverage value, which can then easily be used in any location
within our test runner implementation. To avoid endless test runs,
if a screen cannot be reached, the end condition keeps track of the
test step that can be executed from any screen and checks if all of
them have been executed in the current test execution. If all test
steps were executed and still screens have not been reached, the
end condition fails the test with a corresponding error message.

Custom exploration algorithm. OSMO provides different algo-
rithms to traverse the model and generate tests from it. These algo-
rithms are different combinations of random traversals, some using
weights of specific test steps and some try to balance which test
steps are taken to avoid always executing the same ones. However,
in our experiments, we quickly saw that the standard algorithms
provided by OSMO took a long time to explore the entire app for
some variants. To improve this, we developed our own algorithm
better suited for our test goals. Our algorithm keeps track of the
test steps already executed and avoids taking them again as long
as other steps are available. Additionally, it remembers which test
steps are available on which visited screen and a graph that stores
from which screen we navigated to what other screen using which
test step. It then uses this information to search for not yet executed
test steps if no new step is available on the current screen. The algo-
rithm computes the shortest path to all missing (i.e., not executed
in the test) test steps using Dijkstra’s Shortest Path Algorithm [13]. It
then executes the test steps along the shortest path found to reach
the missing test step.

5 EXPERIMENTS
To verify if our test model can be used to automatically test a family
of mobile apps, we performed some experiments executing the
model on different apps. This section describes the experiments.

5.1 Research goal
To assess the quality and usefulness of our solution, we applied it
on a set of app variants from our industry partner. Figure 2 depicts
the navigation through an app variant. We analyze whether the
generatedmodel parts can be used to navigate arbitrary screen links,

like shown in Figure 2, and how often the automated exploration is
used. Therefore, we distinguish the three execution modes:
(1) Coded: hard coded pre-defined test steps that are selected by

class for inclusion in the variants. These steps are depicted as
black arrows in Figure 2, in this case the login via email.

(2) Generated: generated test steps from the configuration file that
load the page objects dynamically, depicted as blue arrows in
Figure 2.

(3) Auto Exploration: the automated random exploration mode
that recovers the model if it reaches an unknown / not modelled
screen, depicted as red arrows in Figure 2.
Moreover, we want to investigate how well our implementation

works and our algorithm compared to a default algorithm of OSMO.
To investigate this we formulated the following research questions:
• RQ0: How much do the different apps vary from one an-
other? This RQ aims at giving us a better understanding of the
differences our test model needs to cover on app variants.

• RQ1: Does our solution work for all app variants? The goal
for our collaboration is to create a test model that can be used to
test any app variant. Therefore, we want to verify this by testing
a set of app variants with different kinds of variability.

• RQ2: How are the different execution modes distributed?
We are interested in knowing how much of the test execution
uses Coded or Generated test steps in the model. This helps to
show the variability in the different variants, since the generated
steps are specific for an app variant. Auto Exploration is only
used if the model reaches a screen that we did not model yet.
Therefore, we are interested in how often that still happens, and
how much is still missing from the model, and how long it takes
to get back to the modeled part of the app variants.

• RQ3: How much do our adaptions to OSMO’s algorithms
improve the test execution? The reason we developed our
own algorithm to execute the test model was that the standard
algorithms in OSMO took too much time to test a single variant,
which is an issue when testing many variants. With this RQ, we
want to verify how much of an improvement we can get in time
and screens visited with our algorithms.

5.2 Method
We performed experiments on 27 Android app variants from differ-
ent domains, with different types of navigation between screens
and variability in the available features. The set of variants was
selected by our industry partner.

We executed OSMO with two different algorithms: the standard
OSMO weighted balancing algorithm that randomly executes the
model but takes weights and previously executed test steps into
account to try to avoid executing the same test steps over and
over again, and the new exploration algorithm we implemented
(see Section 4.6). The OSMO algorithm was selected because it
balances the execution to weigh not executed test steps higher
and is therefore better suited to explore the entire model than
other algorithms. Additionally, we performed experiments with
two end conditions: our own developed condition to reach all screens
according to the configuration file, and an end condition with a
fixed test length of test steps. To answer our RQs, we used different
data. For RQ0, the variability among variants. For RQ1, data from

Model-based Testing for a Family of Mobile Applications: Industrial Experiences SPLC’23, August 28–September 1, 2023, Tokyo, Japan

loginWithEmail

gotoFacebookNewsTab

gotoMoreTab gotoKontaktFromMore

gotoPollsTab

gotoReceiptArchiveFromMore

NavigateBack
gotoPollsTab

gotoMoreTab

gotoLoyaltyClubTab

gotoPollsTab

gotoLoyaltyClubTab

gotoLoyaltyClubTab

gotoPageFromMore

ClickAction_810_2046gotoWebsiteFromMore

gotoAppstoreratingscreenFromMore

ClickAction_0_2046
gotoLoginWithEmail

Figure 2: Example of testing an app using coded (black), generated (blue), auto exploration (red)

all experiments we performed. For RQ2, the OSMO’s weighted
balancing algorithm with a fixed length of 100 test steps, with the
automated exploration mode turned on. ForRQ3, we executed both
algorithms with both end condition, to see how long the different
algorithms take to reach all screens. We also collected how many of
the screens are reached by the algorithms for a fixed test length of
30 steps. For this experiment, we turned the automated exploration
mode off, because it is not influenced by the algorithms and just
adds additional noise for comparing the algorithms. Finally, for all
experiments, we limited the time for each test execution with our
model to two hours, after which the test ends with a failure.

The experiments were executed on a Dell Latitude 5400 laptop
with an Intel Core𝑇𝑀 i7-8665U processor (1.9 GHz, 4 cores), 32GB of
RAM, SSD storage, and running the Windows 10 operating system.
The app variants were executed on the Android Studio emulator
version 32.1, on a Pixel 5 device running Android 11.

5.3 Metrics
From the experimental settings described above, we collected the
following metrics from the app variants:
• Number of shortcuts in an app variant, to give an idea about the
size of the apps (RQ0).

• Number of screen links in an app variant that can link to any
screens and lead to generated test steps (RQ0).

• Number of generated test steps for a specific app variant (RQ0).
Moreover, we compute metrics from executing the test model

against specific app variants:
• Number of all executed test steps in the entire test model (RQ3).
• Number of executed hard coded test steps in our test model (RQ2).
• Number of executed steps among the generated ones for each spe-
cific app of the family (RQ2).

• Number of automated explorations that were triggered during test
execution (RQ2).

• Number of executed interactions with the automated exploration
mode to recover to a state the model continue executing (RQ2).

• Number of screens reached in an app variant (RQ3).

SPLC’23, August 28–September 1, 2023, Tokyo, Japan Fischer et al.

Table 1: Tested mobile apps and metrics

App Shortcuts Link
screens

Generated
Test Steps Main navigation

1 10 0 8 Icon grid
2 14 2 13 Drawer menu
3 9 0 8 Drawer menu
4 88 5 87 Drawer menu
5 17 1 15 Tab bar
6 9 1 8 Tab bar
7 11 1 9 Tab bar
8 10 1 9 Tab bar
9 13 1 11 Tab bar
10 8 1 7 Tab bar
11 13 2 12 Tab bar
12 9 1 8 Tab bar
13 14 2 12 Tab bar
14 10 1 9 Tab bar
15 8 1 7 Tab bar
16 17 2 16 Tab bar
17 13 1 11 Tab bar
18 12 2 10 Tab bar
19 12 1 11 Tab bar
20 12 2 11 Tab bar
21 17 1 12 Tab bar
22 6 5 17 Tab bar
23 17 2 14 Tab bar
24 17 2 11 Tab bar
25 7 2 13 Tab bar
26 17 2 13 Tab bar
27 14 1 10 Tab bar

5.4 Results
In this section, we present the results from our experiments, by
research question.

RQ0:Howmuch do the different apps vary fromone another?
Table 1 lists the 27 app variant used in our experiment, with an
app number in the first column for easier reference. This table also
has the number of shortcuts in the app configuration, the number
of screens with links to other screens via a shortcut, the number
of generated test steps in our approach, and the main navigation
type used by the app. The first observation we can make is that
most app variants use the tab bar as the main navigation mode
between screens. Moreover, we see that there is a great variety
in the number of link screens and shortcuts between screens in
the different apps, which results in a varying number of generated
test steps. Our model currently contains 14 hard coded test steps,
including the test step to enter the automated exploration mode.

Answering RQ0: The app variants have a high degree of vari-
ability, but there are commonalities in the core features that
most apps support.

RQ1: Does our solution work for all app variants? In our ex-
periments, all but one variant (App 5) could be executed with our
test model. App 5 could not be executed because it has a custom
login screen, only for this specific variant, that is not supported
in our test model. For another two variants (Apps 22 and 25) we
can run our test model, but both have some IDs missing on their
link screens. These screens are of a subtype not encountered before
the experiments. Thus, the source code was not yet extended to
include the required IDs causing the tests to fail, because they could
not access the links. Finally, we discovered issues with another
app (App 1) that could not be executed with the automated explo-
ration mode, because it was not able to re-enter the normal model
execution. This happened because of issues how the automated
exploration mode tries to recognize the currently displayed screen
in combination with the different main navigation method of App
1 (i.e., the icon grid). With this method of navigation, the code for
several screens gets stacked during navigation and only the top
one is visible on the screen. However, this means that several of the
IDs we use to identify the screens are available at the same time
and the automated exploration mode can not recognize the actual
screen as for the apps with the other navigation methods.

As described above, we were able to execute most of the 27 apps,
except for those with missing IDs and an unsupported login screen.
The remaining 23 apps could be executed as intended. However,
some flakiness [35] remains in the current test model, which forced
us to re-run the tests for some apps. The reason was issues with
app permissions, like reading the current location, that sometimes
caused a dialog to open in certain screens. Even though we config-
ured Appium to automatically grant all permissions, this still kept
happening for some apps in some executions. We were not able
to reliably reproduce this issue. To deal with it, we coded steps to
recognize the dialog and acknowledge it in the implementation of
the affected page objects.

Answering RQ1: For most app variants (23 out of 27) our solu-
tion (i.e., test model) works as intended. However, there remain
some open issues that we need to address in our ongoing work.

RQ2: How are the different execution modes distributed? We
show the distribution of test steps for the three different modes
in Figure 3. We excluded variant App 1 and App 5 because of the
different main navigation method and the unsupported login screen.
Finally, Apps 22 and 25 have missing IDs in their link screens and
therefore fail before the 100 test steps could be executed.

In Figure 3 we see that most of the executed test steps are gener-
ated steps. For the variants that could execute all 100 test steps, on
average, 71.5% of the steps were generated ones, 23.9% hard coded
steps, and 4.6% ones that entered the automated exploration mode.

Figure 4 depicts the number of interactions the automated ex-
ploration mode required to go to a state that the test model could
be executed on again, for every time the mode was entered. Apps
14, 22 and 25 never entered the automated exploration mode and
are therefore omitted from Figure 4. For most occurrences, namely
53 times, a modeled screen was reached after just one automated
interaction, by either navigating back through the android back
button, by clicking on the in-app back button or by clicking on other

Model-based Testing for a Family of Mobile Applications: Industrial Experiences SPLC’23, August 28–September 1, 2023, Tokyo, Japan

22

72

6

16

80

4

26

68

6

17

81

2

26

74

17

78

5

27

71

2

20

79

1

32

63

5

19

72

9

24

75

1

22

71

7

11

11

17

82

1

26

70

4

4
5

29

70

1

18

81

1

29

61

10

17

78

5

30

50

20

31

66

3

26

69

5

28

66

6

31

68

1

0

25

50

75

100

2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
app

st
ep

s

mode AutoExploration Generated Coded

Figure 3: Distribution of execution modes

1

2

4

8

16

2 3 4 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 23 24 26 27
app

re
co

ve
rS

te
ps

Figure 4: Number of interactions required to recover to a
state that the model can keep executing

screen elements (a tab in the tab bar in most cases). On average,
the automated exploration mode needed 3.1 interactions with the
app to reach a modeled screen and continue with the normal model
execution.

Answering RQ2: In our current test model, the majority of
the test steps executed are the ones generated from the con-
figuration file, followed by hard-code ones. The automated
exploration was used the least, on average, and in most cases
recovered in only one or very few interactions.

RQ3: How much do our adaptions to OSMO’s algorithms im-
prove the test execution? In the first experiment to answer this
research question, we executed the two algorithms with the end
condition to reach all screens that are linked to with a shortcut.
Figure 5 presents the number of test steps required to fulfill the
end condition, with the test steps on the y-axis in logarithmic scale.
We also excluded App 5, as the number of steps is zero. The re-
sults show that in general our exploration algorithm reached all
relevant screens in fewer test steps than the standard OSMO algo-
rithm. There are only two exceptions: App 10, where the weighted
balancing algorithms randomly generated a test with fewer steps
that fulfills our end condition; and App 25, where the weighted bal-
ancing algorithm reached the screen with the missing IDs quicker
and then failed because of them. Moreover, for App 4 the weighted
balancing algorithm took more than two hours to generate the

21 24
17

30
20

13

39
30

23
19

24 28

4

34 30

17
22 19

24

11

175

20 20 19 18 19 19

79
64 55

66

27

99 106

48 45

69
57

21

198 183

4

63 54
70

22

1115

46

30

58
74 79

4

32

256

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
app

st
ep

s

algorithm

Exploration
WeightedBalancing

Figure 5: Number of test steps required to reach all screens

12

17

12

17

14

11

20

17

13

16
17 17

6

17 17

7

17

14

17

13

18

12

14
15

14

17

11
12

9

13
12

9

13
12 12

11
12

13

9

12 12

7

12
11

13
12 12

9

11

13 13
12

0

5

10

15

20

1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
app

sc
re

en
s.

re
ac

he
d

algorithm

Exploration
WeightedBalancing

Figure 6: Number of screens reached in 30 test steps

test and therefore failed before reaching the end condition. App
4 has the highest number of shortcuts and includes five different
link screens, which are more difficult to reach in a random testing
scenario. In such a case, the advantage of our algorithm prevails.

For the second experiment, we used the end condition to include
a fixed number of 30 test steps in the generated tests. In this scenario,
the number of test steps is the same for both algorithms, but we
measure the number of screens that are reached with only a limited
number of steps. Because our exploration algorithm tries to exclude
test steps that have previously already been executed, we would
assume that it reaches more screens in the same number of test
steps. Figure 6 shows the number of screens reached. For all app
variants but two, the exploration algorithm reached more screens.
The two apps where this is not the case are Apps 22 and 25, which
contain the link screens with the missing IDs.

Answering RQ3: From our experiments, we found that with our
algorithmwe could improve the test length, to reach all screens,
by 73.8% on average. In other words, our algorithm can reduce
the number of test steps required to meet the coverage criteria.
Moreover, with a fixed test length of 30 steps, our algorithm
reaches on average 28.3% more screens.

6 DISCUSSION
In this section we discuss the challenges we faced in our work
on testing the family of mobile app variants and present lessons
learned during our work and the analysis of our experiments.

SPLC’23, August 28–September 1, 2023, Tokyo, Japan Fischer et al.

6.1 Challenges
During the conduction of this work, we faced several challenges
related to the characteristics of the system under test, limitations
of our approach, or due to shortcomings of the used tooling. These
challenges are described next.

Huge variability space. The app family is highly configurable.
Some of the variability comes from features that can be optionally
selected for a variant. There exist many configuration options for
the features themselves and how they need to be interacted with.
Additionally, to this already very large configuration space, the apps
can contain nearly unconstrained links between screens, which has
to be dealt with when testing the apps.

Making the app family testable. At the start of our collaboration,
the app variants did not include many IDs to identify screens or
their contained elements and widgets. Appium allows us to identify
elements with multiple attributes, like x-path or text. However,
the apps support switching between languages, which make the
identification via text impossible. Moreover, there are parts where
the text can be configured by the customer business. Identifying el-
ements using x-path has similar issues when elements are not fixed
to a location. In our case the elements’ location changes between
variants and some can be configured by the customer to be in a
different location. A lot of effort was invested to make all elements
required for testing identifiable. We identified all required elements
and added IDs to them in the app source code. And still every time
we extend the model to new screens or features we have to keep
adding IDs, which slows down the rollout of a new version of the
test model that then only works on the newest builds that contain
all the IDs.

Keeping track of the app state. To interact with the app variants
correctly, we need to keep their current state in mind. Some parts of
the app state, like currently available rewards and vouchers, can be
retrieved through an API during testing. Other parts, like the user
currently logged in, have to be stored during the test execution.
We keep track of the current screen by storing the page object
associated with the screen. However, when using the automated
exploration of the app and subsequently resuming with the normal
test model execution, identifying the current screens is challenging.
We use IDs that identify the current screen instance and check if
we can generate a page object instance for it. However, we found
that there are still issues with this approach for app variants that
have a very large number of screens since the identification of the
current screen can take very long, because the number of IDs that
have to be checked. More issues can come from apps that navigate
to different screens by overlaying the new screen over the last one,
as happened in our experiments with App 1. In such a case, our
current approach is not able to identify the current screen and will
fail to create the correct page object, which can fail the test.

Testing apps for different OS with the same model. Despite
not having apps for different operating systems (OSs) in our ex-
periments, we had this discussion with developers at our industry
partner. The challenge comes from the need of the same apps being
available for different mobile OS. We tried to restrict differences in
the interaction between the different OS to our Helper class that

selects elements with the OS specific UI automation framework
used by Appium. This requires that the IDs in the apps are consisted
between OS and the apps behave the same independent of the OS.
However, to this day we were not able to fully realize this. There
are remaining differences in the IDs for elements that we have to
deal with in the page objects, which could not be consistently be
propagated in the app build.

Moreover, there are distinct challenges when testing on different
OS. For instance, for iOS, Appium requires passing the nesting
depth of elements in the screen that are loaded for interaction by the
automation framework. If we set this nesting depth too low, we can
not access certain elements. If we set is too high, the app execution
becomes very slow and tests run longer. On the other hand, when
testing with Android, we encountered issues with app permissions.
For instance, some screens require permissions to access the phone
location. Appium allows passing arguments to grant all permissions
at initialization. Nevertheless, in our experiments, the dialog to ask
for the permissions would randomly appear and lead to tests failing
that had to be re-executed.

Appium field annotations could not be used. Appium provides
Java annotations that can be used for fields in the page object classes
to automatically initialize them to address certain elements on the
screen. These are usually recommended to use for the implemen-
tation of page objects. However, due to the variability of the app
family, we could not use these annotations, because some elements
might only be available for some variants. If we test a variant that
does not have the element and use these field annotations, the test
would fail as soon as we instantiate the page object. To support the
variability of the app screens, we loaded elements during the execu-
tion of certain interactions with the app and made their execution
conditional with if or switch statements.

6.2 Lessons Learned

Do not rely on one variability mechanism. At the beginning of
the project, we investigated the best way to model our variable test
model, and documented our thoughts in our previous work [16]. We
first wanted to model the configurable links between screens, with
a separate test step for each link. To achieve this, we had to generate
the test steps from the configuration files and templates, which cor-
responds to the variability mechanism of conditional compilation.
However, we then dove into the configurability of the individual
screens and learned that there can be instances of the same screen
with different configurations within a variant. Therefore, we imple-
mented the page objects to be able to correspond to the different
configurations dynamically with conditional execution. For other
parts, like adding model classes if a feature is present for a variant,
we also use conditional execution, because it is better supported by
existing programming tools.

Tweaking the MBT algorithm can pay off.We found that creat-
ing our own algorithm to decide the next test step improved the test
execution and explores the entire test model in less time than the
standard OSMO algorithms. To achieve this, we had to provide the
algorithm with additional data to represent the current app state,
which the standard algorithms do not have. Thus, the advantages
of our algorithm might be limited to our specific model design. For

Model-based Testing for a Family of Mobile Applications: Industrial Experiences SPLC’23, August 28–September 1, 2023, Tokyo, Japan

instance, if instead of generating a test step for each link in the
tab bar, we simply used one test step that randomly clicks on a
tab and loads the corresponding page object, we could not learn
the following state and the advantage our algorithm brings might
disappear. Therefore, for different cases, other algorithms might
have more advantages, but nonetheless we believe that considering
optimizations to the algorithms can have a beneficial impact in test
generation.

Maintain separation of concerns for verifying app parts. We
developed model classes to contain test steps for the same features
or use cases. This helps to better understand the model and the
tests that can be generated for specific use cases. Moreover, we
kept the tasks of verifying the screens and interacting with them
directly in the page objects. We believe this design support a better
comprehension of the model and helps to avoid side effect between
configurations.

Invest in testability from the start of the development. As
mentioned above, we had to invest a lot of effort into making the
apps testable by introducing IDs to screens and elements within
them. Therefore, companies should invest in these measure from
the start. This is a known issues in practice, but nonetheless we saw
again in this collaboration that this well-known best practice was
not applied. In the future, when adding new feature and screens,
such IDs should be introduced already in new developments and
testability should be kept in mind. This can also help in reducing
inconsistencies between Android and iOS.

7 CONCLUSIONS AND FUTUREWORK
We presented in this work a solution for testing a family of mobile
applications using a model-based testing approach. This solution
emerged from our collaboration with hello again GmbH. To adhere
to the configuration of the current app variants in general, our test
model can be adjusted in several ways. We select required model
parts for available features, generate model parts from a configu-
ration specification file, and dynamically adjust the interactions
with the application screens with configurable page objects. To
assess how well our solution works on the app family, we applied
it to a set of 27 app variants provided by hello again GmbH. Our
findings showed that the model works in most cases, with some
remaining issues that we need to further improve in our future
work. Moreover, we investigate how often which model parts are
used during execution, and the effect a custom algorithm has on
the test execution, showing a reasonable improvement in our case.

Themodel-based test approach described in this paper is in use to
test production apps at our partner company. To date about 300 apps
have been tested with it and the manual effort for testing could be
reduced about 50% according to our industry partner. As part of our
future work, we could do a more in depth evaluation of the results
from applying the testing approach at the company. Moreover, we
plan to run our model on more variants on device farms with many
different devices and device configurations. This will allow us to
further evaluate the impact of different devices and other aspects
in test execution. We are also interested in investigating the use
of the graphs stored from our algorithm for offline computation
of test sequences, to reach certain test goals, such as navigating to

all screens. This could speed up the generation and execution of
tests. However, the problem is very similar to the traveling sales
person problem, which is known to be NP-complete. Another
item for our future work is to support the maintenance of the test
model, by using data from operation and identify parts that are
missing from the model or where to model execution deviates from
real operation. Finally, we are interested in increasing the level of
automation for our testing process and increase the proportion of
the model that can be covered with automated exploration, with
providing predefined test sequences only for certain parts (e.g.,
login to the app), and to provide an oracle for more difficult to
verify parts.

ACKNOWLEDGMENTS
The research reported in this paper has been supported by BMK,
BMAW, and the State of Upper Austria in the frame of the SCCH
competence center INTEGRATE (FFG grant 892418) part of the
FFG COMET Competence Centers for Excellent Technologies Pro-
gramme; and by the Austrian Science Fund (FWF) grant P31989-
N31.

REFERENCES
[1] Tanwir Ahmad, Junaid Iqbal, Adnan Ashraf, Dragos Truscan, and Ivan Porres.

2019. Model-based testing using UML activity diagrams: A systematic mapping
study. Computer Science Review 33 (2019), 98–112.

[2] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De
Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing
of Android applications. In IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012. ACM, 258–261.
https://doi.org/10.1145/2351676.2351717

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Softw. 32, 5 (2015), 53–59. https://doi.org/10.1109/MS.2014.55

[4] Aitor Arrieta, Goiuria Sagardui, and Leire Etxeberria. 2014. A model-based
testing methodology for the systematic validation of highly configurable cyber-
physical systems. In 6th International Conference on Advances in System Testing
and Validation Lifecycle. IARIA XPS Press, 66–72.

[5] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013. ACM, 641–660. https://doi.org/10.1145/2509136.2509549

[6] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85–103.

[7] J. Bosch, R. Capilla, and R. Hilliard. 2015. Trends in Systems and Software
Variability. IEEE Software 32, 3 (2015), 44–51.

[8] Rafael Capilla, J. Bosch, and K. C. Kang. 2013. Systems and Software Variability
Management: Concepts, Tools and Experiences. Springer.

[9] Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI test-
ing of android apps with minimal restart and approximate learning. In Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA 2013, part of
SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. ACM, 623–640. https:
//doi.org/10.1145/2509136.2509552

[10] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Transactions on Software Engineering 39, 8 (2013), 1069–1089.
https://doi.org/10.1109/TSE.2012.86

[11] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-Francois Raskin. 2010. Model checking lots of systems: efficient veri-
fication of temporal properties in software product lines. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 1. 335–344. https:
//doi.org/10.1145/1806799.1806850

[12] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and B.M.
Horowitz. 1999. Model-based testing in practice. In International Conference on
Software Engineering. 285–294. https://doi.org/10.1145/302405.302640

[13] Edsger W Dijkstra. 2022. A note on two problems in connexion with graphs. In
Edsger Wybe Dijkstra: His Life, Work, and Legacy. 287–290.

https://doi.org/10.1145/2351676.2351717
https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1145/302405.302640

SPLC’23, August 28–September 1, 2023, Tokyo, Japan Fischer et al.

[14] Ivan do Carmo Machado. 2014. Fault model-based variability testing. Ph. D.
Dissertation. Federal University of Bahia, Salvador, Brazil. http://repositorio.
ufba.br/ri/handle/ri/22826

[15] Christian Dziobek and Jens Weiland. 2009. Variantenmodellierung und -
konfiguration eingebetteter automotive Software mit Simulink. In Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme V, Schloss
Dagstuhl, Germany, 2009, Tagungsband Modellbasierte Entwicklung eingebetteter
Systeme (Informatik-Bericht, Vol. 2009-01). TU Braunschweig, Institut für Soft-
ware Systems Engineering, 36–45. http://www.sse-tubs.de/mbees-dagstuhl/
MBEES2009_Proceedings_online_small.pdf

[16] Stefan Fischer, Gabriela KarolineMichelon,Wesley K. G. Assunção, Rudolf Ramler,
and Alexander Egyed. 2023. Designing a Test Model for a Configurable System:
An Exploratory Study of Preprocessor Directives and Feature Toggles. In 17th
International Working Conference on Variability Modelling of Software-Intensive
Systems (VaMoS). ACM, 31–39. https://doi.org/10.1145/3571788.3571795

[17] Stefan Fischer, Gabriela Karoline Michelon, Rudolf Ramler, Lukas Linsbauer, and
Alexander Egyed. 2020. Automated test reuse for highly configurable software.
Empir. Softw. Eng. 25, 6 (2020), 5295–5332. https://doi.org/10.1007/s10664-020-
09884-x

[18] Stefan Fischer, Rudolf Ramler, and Lukas Linsbauer. 2021. Comparing Automated
Reuse of Scripted Tests and Model-Based Tests for Configurable Software. In
28th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 421–430. https:
//doi.org/10.1109/APSEC53868.2021.00049

[19] Stefan Fischer, Rudolf Ramler, Lukas Linsbauer, and Alexander Egyed. 2019.
Automating test reuse for highly configurable software. In Proceedings of the 23rd
International Systems and Software Product Line Conference, SPLC 2019, Volume
A, Paris, France, September 9-13, 2019. ACM, 1:1–1:11. https://doi.org/10.1145/
3336294.3336305

[20] Vahid Garousi and Junji Zhi. 2013. A survey of software testing practices in
Canada. Journal of Systems and Software 86, 5 (2013), 1354–1376.

[21] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd D. Millstein. 2013.
RERAN: timing- and touch-sensitive record and replay for Android. In 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013. IEEE Computer Society, 72–81. https://doi.org/10.1109/
ICSE.2013.6606553

[22] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. 2014.
Modeling Variants of Automotive Systems using Views. CoRR abs/1409.6629
(2014). arXiv:1409.6629 http://arxiv.org/abs/1409.6629

[23] Havva Gulay Gurbuz and Bedir Tekinerdogan. 2018. Model-based testing for
software safety: a systematic mapping study. Software Quality Journal 26, 4
(2018), 1327–1372.

[24] Günter Halmans and Klaus Pohl. 2003. Communicating the Variability of a
Software-Product Family to Customers. Software and System Modeling 2, 1 (2003),
15–36.

[25] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight
record-and-replay for Android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015. ACM, 349–366. https://doi.org/10.1145/2814270.2814320

[26] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=
11231

[27] Teemu Kanstrén and Olli-Pekka Puolitaival. 2012. Using Built-In Domain-Specific
Modeling Support to Guide Model-Based Test Generation. In Proceedings 7th
Workshop on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25 March 2012
(EPTCS, Vol. 80). 58–72. https://doi.org/10.4204/EPTCS.80.5

[28] Stefan Karlsson, Adnan Causevic, Daniel Sundmark, and Mårten Larsson. 2021.
Model-based Automated Testing of Mobile Applications: An Industrial Case

Study. In 14th IEEE International Conference on Software Testing, Verification and
Validation Workshops, ICST Workshops 2021, Porto de Galinhas, Brazil, April 12-16,
2021. IEEE, 130–137. https://doi.org/10.1109/ICSTW52544.2021.00033

[29] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,
Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,
Philipp Orth, and Johannes Richenhagen. 2018. Improving model-based testing
in automotive software engineering. In 40th International Conference on Software
Engineering: Software Engineering in Practice. 172–180.

[30] Axel Legay, Gilles Perrouin, Xavier Devroey, Maxime Cordy, Pierre-Yves
Schobbens, and Patrick Heymans. 2017. On Featured Transition Systems. In
SOFSEM 2017: Theory and Practice of Computer Science. Springer International
Publishing, Cham, 453–463.

[31] Maurizio Leotta, Matteo Biagiola, Filippo Ricca, Mariano Ceccato, and Paolo
Tonella. 2020. A Family of Experiments to Assess the Impact of Page Object
Pattern in Web Test Suite Development. In 13th IEEE International Conference on
Software Testing, Validation and Verification, ICST 2020, Porto, Portugal, October
24-28, 2020. IEEE, 263–273. https://doi.org/10.1109/ICST46399.2020.00035

[32] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August
18-26, 2013. ACM, 224–234. https://doi.org/10.1145/2491411.2491450

[33] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis, ISSTA 2016, Saarbrücken, Germany, July
18-20, 2016. ACM, 94–105. https://doi.org/10.1145/2931037.2931054

[34] Sebastian Oster, Andreas Wübbeke, Gregor Engels, and Andy Schürr. 2011. A
Survey of Model-Based Software Product Lines Testing. In Model-Based Testing
for Embedded Systems. CRC Press. https://doi.org/10.1201/b11321-14

[35] Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2021. A
survey of flaky tests. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 1 (2021), 1–74.

[36] Kleber L. Petry, Edson OliveiraJr, and Avelino F. Zorzo. 2020. Model-based testing
of software product lines: Mapping study and research roadmap. J. Syst. Softw.
167 (2020), 110608. https://doi.org/10.1016/j.jss.2020.110608

[37] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques (1 ed.). Springer.

[38] Alexander Pretschner. 2005. Model-Based Testing in Practice. In FM 2005: Formal
Methods. Springer Berlin Heidelberg, Berlin, Heidelberg, 537–541.

[39] Andreas Reuys, Erik Kamsties, Klaus Pohl, and Sacha Reis. 2005. Model-Based
System Testing of Software Product Families. In 17th International Conference
Advanced Information Systems Engineering (CAiSE) (Lecture Notes in Computer
Science, Vol. 3520). Springer, 519–534. https://doi.org/10.1007/11431855_36

[40] Kabir S. Said, Liming Nie, Adekunle Akinjobi Ajibode, and Xueyi Zhou. 2020.
GUI testing for mobile applications: objectives, approaches and challenges. In
Internetware’20: 12th Asia-Pacific Symposium on Internetware, Singapore, November
1-3, 2020. ACM, 51–60. https://doi.org/10.1145/3457913.3457931

[41] Klaus Schmid and Isabel John. 2004. A customizable approach to full lifecycle
variability management. Science of Computer Programming 53, 3 (2004), 259–284.

[42] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita
Fasolino. 2019. Automated functional testing of mobile applications: a systematic
mapping study. Softw. Qual. J. 27, 1 (2019), 149–201. https://doi.org/10.1007/
s11219-018-9418-6

[43] Mark Utting and Bruno Legeard. 2010. Practical model-based testing: a tools
approach. Elsevier.

[44] Mark Utting, Bruno Legeard, Fabrice Bouquet, Elizabeta Fourneret, Fabien
Peureux, and Alexandre Vernotte. 2016. Chapter Two - Recent Advances
in Model-Based Testing. Advances in Computers, Vol. 101. Elsevier, 53–120.
https://doi.org/10.1016/bs.adcom.2015.11.004

http://repositorio.ufba.br/ri/handle/ri/22826
http://repositorio.ufba.br/ri/handle/ri/22826
http://www.sse-tubs.de/mbees-dagstuhl/MBEES2009_Proceedings_online_small.pdf
http://www.sse-tubs.de/mbees-dagstuhl/MBEES2009_Proceedings_online_small.pdf
https://doi.org/10.1145/3571788.3571795
https://doi.org/10.1007/s10664-020-09884-x
https://doi.org/10.1007/s10664-020-09884-x
https://doi.org/10.1109/APSEC53868.2021.00049
https://doi.org/10.1109/APSEC53868.2021.00049
https://doi.org/10.1145/3336294.3336305
https://doi.org/10.1145/3336294.3336305
https://doi.org/10.1109/ICSE.2013.6606553
https://doi.org/10.1109/ICSE.2013.6606553
https://arxiv.org/abs/1409.6629
http://arxiv.org/abs/1409.6629
https://doi.org/10.1145/2814270.2814320
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://doi.org/10.4204/EPTCS.80.5
https://doi.org/10.1109/ICSTW52544.2021.00033
https://doi.org/10.1109/ICST46399.2020.00035
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1201/b11321-14
https://doi.org/10.1016/j.jss.2020.110608
https://doi.org/10.1007/11431855_36
https://doi.org/10.1145/3457913.3457931
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1016/bs.adcom.2015.11.004

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Industry context
	4 Model-based Testing solution
	4.1 Page objects
	4.2 The OSMO model
	4.3 Generating model parts
	4.4 Dynamic screen components
	4.5 Exploration of un-modeled parts
	4.6 Other OSMO adaptations

	5 Experiments
	5.1 Research goal
	5.2 Method
	5.3 Metrics
	5.4 Results

	6 Discussion
	6.1 Challenges
	6.2 Lessons Learned

	7 Conclusions and Future Work
	Acknowledgments
	References

