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Abstract—Digital processes driven by data are the basis for
industry operations nowadays. Despite relying on software for
such processes, the industry faces significant challenges due
to legacy systems. Legacy systems are pieces of software that,
despite being vital for industry operations, have limitations in
terms of performance and scalability needs. Thus, to ensuring
that these systems can still continue to deliver business value,
there is a need for re-engineering such legacy system. This
is a situation faced by Volvo Group, with their system called
SCORE, initially implemented in 2017, and used by HR teams
and managers to manage team structures, employee data, and
operational workflows. The SCORE system faces challenges
related to performance issues, database inefficiencies, outdated
user interface, lack of flexibility, and lack of modern software
engineering practices. As a strategy to keep the business value of
SCORE, Volvo has started using Large Language Models (LLMs)
to speed up it re-engineering. This paper presents the experiences
of using LLMs at Volvo Group. More specifically, we describe
how GPT-4 and Claude AI were applied, with three learning
strategies (i.e. zero shot, one shot, and few shot), to address the
challenges of the legacy system. The prompts and examples of
the responses given by the Foundations Models are presented
and discussed. By adopting the insights provided by LLMs, we
were able to reduce API response times from 20-30 seconds to
3 seconds, improve UI usability by restructuring elements for
easier navigation, and enhance scalability with better database
queries and code modularization. The CI/CD pipeline was also
streamlined, enabling faster and more reliable deployments. As
an additional contribution, we report six lessons learned, allowing
other industries and researchers to comprehend the strategic
value of integrating LLMs into legacy system modernization.

Index Terms—Foundation Models, Maintenance and Evolu-
tion, Software Modernization, Industry Report.

I. INTRODUCTION

In today’s digital landscape, industries such as finance,
automotive, healthcare and manufacturing are increasingly
driven by data and digital processes to improve operations,
improve customer experience, and remain competitive [1]–[3].
Despite advancements, many of these sectors face significant
challenges in upgrading outdated software systems that no
longer meet modern performance and scalability needs [4], [5].
These legacy systems, built to address the demands of earlier
years, are often deeply integrated into the organization’s core
operations, making them difficult to replace or upgrade [6], [7].
Consequently, companies in these industries are confronted

with the complex task of ensuring that these systems can con-
tinue to deliver value, while also adapting to new technological
requirements and higher user expectations, hence there is a
need for re-engineering such legacy systems [6], [8], [9].

The automotive industry, in particular, must balance the
demands of real-time data processing, complex supply chains,
and global customer networks, all of which require robust and
responsive software systems [10]. Automotive companies rely
heavily on platforms for everything from HR management to
supply chain coordination and real-time vehicle diagnostics,
making it critical that these systems operate seamlessly [1].
Systems in the automotive sector need to handle high transac-
tion volumes, ensure security, and meet compliance require-
ments [11], [12]. The limitations of legacy systems are perfor-
mance bottlenecks, lack of scalability, and outdated interfaces
that impact the user experience, efficiency, and ultimately, the
organization’s overall agility.

Volvo Group encountered similar challenges with its
SCORE system, an internal platform used by HR teams and
managers to manage team structures, employee data, and
operational workflows. Initially developed to support Volvo’s
HR functions, the SCORE platform became a critical resource
over time, but it began to exhibit substantial limitations. Per-
formance issues—such as slow API response times, inefficient
database interactions, and an outdated user interface—were
hindering its utility and negatively impacting the user experi-
ence. These issues not only led to delays in accessing essential
data but also impacted Volvo’s ability to make timely HR
and organizational decisions. Furthermore, the SCORE sys-
tem’s lack of scalability and continuous integration/continuous
deployment (CI/CD) support made it increasingly difficult to
maintain and evolve in line with Volvo’s growing needs.

To address these challenges, we proposed a solution to re-
engineer leveraging Large Language Models (LLMs), specif-
ically GPT-41 and Claude AI,2 to explore optimization strate-
gies for improving the platform’s API performance, UI us-
ability, scalability, and CI/CD pipeline. The idea was to apply
the problem-solving capabilities of LLMs to identify and im-

1https://openai.com/index/gpt-4/
2https://www.anthropic.com/claude

https://openai.com/index/gpt-4/
https://www.anthropic.com/claude


plement targeted enhancements in these different tasks. LLMs
offer significant advantages in modern software engineering
by understanding complex code structures, identifying per-
formance bottlenecks, and generating actionable recommen-
dations that might not be readily apparent through traditional
methods [13], [14].

In this project, we used LLMs to analyze and optimize
multiple facets of the SCORE system. We experimented dif-
ferent learning techniques to systematically guide GPT-4 and
Claude AI through the optimization process, namely zero-shot,
one-shot, and few-shot [15], [16]. In zero-shot learning, the
models were provided with general descriptions of the system
issues to generate broad optimization strategies, enabling us to
understand the models’ baseline suggestions without specific
code input. For one-shot learning, we gave the models a
single code snippet to address a particular API performance
issue, which allowed them to provide more focused recom-
mendations. Lastly, few-shot learning involved presenting the
models with the major codebase, enabling them to suggest
more comprehensive, context-sensitive optimizations across
API performance, UI design, and backend scalability.

The insights and optimizations generated by GPT-4 and
Claude AI were helpful to re-engineer SCORE system. Spe-
cific improvements included reducing API response times
for one of the APIs from 26 seconds to 3 seconds through
query optimization, improving UI usability by restructuring
elements for easier navigation, and enhancing scalability with
better database handling and code modularization. The CI/CD
pipeline was also streamlined, enabling faster and more reli-
able deployments, ultimately reducing the time and resources
required to maintain the system.

This experience report demonstrates the strategic value of
integrating LLMs into legacy system modernization, high-
lighting their ability to drive tangible improvements across
multiple aspects of a system. By harnessing GPT-4 and Claude
AI, Volvo Group not only addressed immediate performance
concerns but also established a framework for continued
optimization and scalability. These experiences underscore the
potential of AI-driven solutions in enabling organizations to
overcome the limitations of aging software systems, achieve
operational efficiency, and future-proof their digital infrastruc-
ture in an increasingly competitive environment.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of the SCORE system and the
challenges faced at Volvo Group because of its limitations.
Section III describes the strategies for the re-engineering
SCORE, and Section IV details the experiences with the
different learning strategies. The lessons learned with our
study are described in Section V. Section VI addresses the
threats to the validity of our study. Section VII reviews related
work, and Section VIII presents the concluding remarks.

II. BACKGROUND AND PROBLEM STATEMENT

Volvo Group3 is a global leader in the manufacturing and
distribution of heavy-duty vehicles, including trucks, buses,

3https://www.volvogroup.com/en/

and construction equipment, with an established reputation
for quality and innovation. In addition to producing advanced
vehicles, Volvo’s operations rely on an intricate network
of warehousing and logistics centers that manage parts and
materials essential to vehicle maintenance, repair, and delivery.
These centers support Volvo’s extensive fleet and help ensure
that customers receive reliable and timely service. One such
critical hub in the Volvo network is the Byhalia warehouse
in Mississippi, USA, where a dedicated team of industrial
workers handle complex tasks such as inventory management,
storage, packing, and the movement and delivery of truck
spare parts. The warehouse plays a vital role in supporting
Volvo’s supply chain and ensuring that parts are available for
customers and service centers when needed.

To manage this vast operation, Volvo developed the SCORE
web system in 2017 as a centralized management and human
resources (HR) platform. The SCORE system was designed
with two main purposes in mind: (i) enabling managers to
track and monitor industrial workers’ performance, and (ii)
assisting HR teams with core functions related to workforce
management. For managers, SCORE provides a single plat-
form to view key data on worker attendance, daily performance
metrics, and efficiency levels, empowering them to make
informed decisions that directly impact productivity and ware-
house operations. For HR, SCORE supports essential functions
such as onboarding new employees, managing terminations,
tracking attendance and leaves, and handling other adminis-
trative tasks that are fundamental to workforce management.

Despite SCORE importance, this system has faced several
limitations since its creation. After its development, the system
quickly became outdated, suffering from a lack of maintenance
and architectural degradation. Over time, these issues com-
pounded, hindering its effectiveness and user satisfaction. The
current state of SCORE reveals five technical and usability
challenges (C) that impact both managerial efficiency and HR
operations, described in what follows.

C1. Severe API Performance Issues. One of the most pressing
issues with the SCORE system was its slow API response
times, which can extend up to multiple seconds to minutes
per request. For managers who rely on real-time data in UI
using these APIs to monitor industrial workers’ performance
and attendance, these delays create substantial obstacles. The
inability to access timely information negatively impacts
decision-making, often resulting in missed opportunities to
improve productivity, allocate resources efficiently, or address
problems promptly. In a high-paced environment like the
Byhalia warehouse, such delays are not just an inconvenience,
as they disrupt workflow continuity and reduce the operational
agility that is crucial for meeting daily goals.

C2. Database Inefficiencies and Bottlenecks. The backend of
the SCORE system is built on a monolithic database structure
that has proven inadequate for handling the high volume of
data generated by the warehouse’s operations. Issues such as
slow query performance and poor database indexing lead to
lengthy wait times when retrieving or updating worker records,
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attendance logs, and other critical data. This bottleneck is
especially problematic when managers or HR personnel at-
tempt to pull comprehensive reports or access multiple records
simultaneously, causing the system to lag or even crash. Con-
sequently, these inefficiencies limit the platform’s scalability,
making it incapable of handling additional data or expanding
to accommodate Volvo’s evolving needs.
C3. Outdated User Interface and Poor User Experience.
The SCORE system’s user interface, developed several years
ago, lacks the intuitiveness and user-centric design expected
in a modern software application. The interface had a poor
user experience due to delay in API response as well, making
it difficult for users to access the data they need efficiently.
This outdated UI impacts both managers, who need quick
insights into worker performance; and HR personnel, who
rely on the platform for various administrative functions. The
poor user experience leads to decrease in users, reducing
their engagement with the system. Also, some users resort to
alternative manual processes, which are time-consuming and
lead to inconsistencies in data management.
C4. Architectural Limitations and Lack of Flexibility.
SCORE was built on a monolithic architecture that restricts
the system’s adaptability and scalability. Adding new features
or modifying existing ones is complex and risky, as changes
to one part of the codebase can impact other areas of the
system (i.e., Ripple effect [17]). This rigid structure has made
it challenging to introduce updates or improvements, trapping
the platform in its initial state and limiting Volvo’s ability
to evolve SCORE in response to emerging operational needs.
The lack of architectural flexibility is particularly problematic
given the growing complexity of the Byhalia warehouse’s
operations and the increasing demand for new functionalities
that could enhance productivity and resource management.
C5. Absence of Continuous Integration/Continuous Deploy-
ment (CI/CD). The SCORE system lacks a CI/CD pipeline,
which is essential for modern software systems to manage fre-
quent updates, bug fixes, and feature deployments seamlessly.
Without automated deployment, each update or fix requires
significant manual effort, increasing the risk of errors and
creating long delays in implementing necessary changes. This
lack of CI/CD has contributed to SCORE’s stagnation, as even
minor improvements are postponed or dismissed due to the
labor-intensive nature of manual deployments. The absence of
a CI/CD pipeline also limits the development team’s ability
to respond quickly to critical bugs or introduce optimizations
that could improve system performance and user experience.

While these challenges represent areas for improvement,
the SCORE system remains a foundational tool in supporting
workforce management at Volvo’s Byhalia warehouse. This
context motivated a re-engineering initiative focused on en-
hancing API performance, optimizing the database, redesign-
ing the UI, improving scalability, and implementing CI/CD
processes. The goal was to offer an opportunity to future-
proof SCORE, ensuring it continues to meet the needs of both
management and HR teams.

III. USING LLMS TO RE-ENGINEER SCORE

The proposed solution involves leveraging LLMs, specif-
ically GPT-4 and Claude AI, to generate and implement
optimization strategies. These AI-driven technologies were
invaluable in analyzing complex code structures, identifying
performance bottlenecks, and recommending actionable im-
provements across various components of SCORE. By using
zero-shot, one-shot, and few-shot learning techniques, these
models enabled us to evaluate different aspects of the platform
(e.g., API efficiency, UI usability, and scalability) and provide
targeted recommendations that address specific system needs.
This approach allowed Volvo to harness the latest AI-driven
advancements, applying intelligent optimizations that can sig-
nificantly enhance SCORE’s functionality and user experience.

Through the AI-driven re-engineering of SCORE, Volvo
Group aims to revitalize its operational and HR management
capabilities, ensuring that the platform continues to deliver
reliable, efficient, and scalable support for its Byhalia ware-
house operations. By addressing the identified areas for im-
provement, Volvo can maintain its commitment to operational
excellence and workforce management innovation, positioning
the SCORE platform as a resilient tool that can adapt to
the dynamic requirements of the automotive and logistics
industries.

IV. EXPERIENCES ON USING LLMS

In this work, we utilized GPT-4 and Claude AI to address
the challenges within Volvo’s SCORE system. The first goal
was to improve the speed and efficiency of four critical
APIs whose SQL queries were creating severe performance
bottlenecks. These APIs were essential for retrieving critical
data from the SCORE system, including attendance, daily
performance metrics, and efficiency reports for the workforce.
However, certain APIs experienced response times measured
in seconds or even minutes due to poorly optimized SQL
queries and inefficient backend structures.

To systematically identify and implement improvements, we
employed GPT-4 and Claude AI with the aim of generating
optimized code and redesign suggestions for these API func-
tions. Additionally, we sought to explore how LLMs could
support similar re-engineering tasks, such as UI improvements,
scalability enhancements, and CI/CD pipeline integration. To
achieve this, we implemented a methodology allowing GPT-4
and Claude AI to independently analyze, suggest, and validate
improvements across different levels of guidance. This process
was organized into prompt design, exploring the zero-shot,
one-shot, and few-shot learning techniques to systematically
test how the models could handle different amounts of con-
textual information.

Prompt Design. We iteratively refine our prompts and use
progressive learning techniques to enhance the specificity and
effectiveness of the LLM-generated optimizations. The process
began with generic descriptions of the performance issues and
gradually moved to more detailed prompts, including specific
code snippets and full code contexts, allowing us to evaluate



how well each model could provide relevant optimizations
based on varying levels of input information. For each API,
we created three types of prompts, each utilizing a different
learning approach:

1) General Problem Description (Zero Shot Learning):
Starting with a high-level prompt that described the
API performance issues and the general need for SQL
optimization.

2) Specific Code Example (One Shot Learning): Providing
the SQL query and specific sections of code from an
underperforming API to prompt more targeted improve-
ments.

3) Full Code Context (Few Shot Learning): Supplying the
entire API function along with contextual information to
prompt comprehensive recommendations for optimizing
each SQL query and the API’s logic.

Use of GPT-4 and Claude AI for Optimization. In this
experimentation phase, GPT-4 and Claude AI were used inde-
pendently to optimize underperforming APIs in the SCORE
system. The primary issue identified in these APIs was ineffi-
cient SQL queries that led to extensive response times due to
factors such as poor query structure, unnecessary loops, and
repetitive data retrieval. We provide below a comprehensive
analysis of the prompts used in each learning technique
and details the outputs, effectiveness, model adaptability, and
impact on the overall system performance.

A. Zero-Shot Learning Approach

The first experiment involved using Zero-shot learning,
where neither GPT-4 nor Claude AI was given any specific
code examples. The idea was to allow the models to infer
optimization strategies based on a high-level description of
the task, without additional context or specific code snippets.
The objective was to understand how well the models could
propose solutions purely based on their internal knowledge
of Node.js, SQL Queries, and API performance, and general
software optimization principles. The Zero-shot prompt used
was:

The Node.js APIs for our management platform experi-
ence severe performance delays. Some internal API SQL
queries take up to a minute to execute, causing major
response time issues. Please provide general recommen-
dations to optimize these APIs for better efficiency and
faster response times.

Recommendations. Both LLMs provided broad recommenda-
tions, as follows:

• GPT-4 recommended various optimization techniques to
improve Node.js API performance, focusing on SQL
query efficiency. Suggestions included optimizing query
indexes, reducing unnecessary data retrieval, limiting
complex joins, and using in-memory caching with tools
like Redis for frequently accessed data. It empha-
sized asynchronous processing, connection pooling, and

database load distribution, as well as monitoring perfor-
mance to identify specific bottlenecks.

• Claude AI provided a practical, example-rich guide with
specific Node.js code implementations for optimizing
database interactions. Techniques included improving
query selectivity, connection pooling, and query caching
with examples for in-memory caching, query batching,
pagination, and request queuing. Additionally, it empha-
sized SQL indexing, error logging for slow queries, and
a rate-limiting approach to prevent database overload.

The insights were valuable into improving Node.js perfor-
mance and SQL efficiency. While GPT-4 delivered a high-
level optimization strategy, Claude AI included actionable
code examples, making its recommendations more applicable
to real-world Node.js applications.

Effectiveness. The zero-shot learning approach yielded valu-
able high-level recommendations but lacked the granularity
needed for direct implementation. Both LLMs provided rel-
evant insights into optimizing SQL queries and API perfor-
mance, yet the absence of code-specific guidance limited their
immediate applicability to SCORE APIs.

Learning and Adaptability. Without specific code examples,
neither model demonstrated contextual adaptability based on
the unique SQL queries or API structures used. Instead, both
relied on general best practices for enhancing performance,
missing the opportunity to address specific bottlenecks within
the SCORE APIs.

Differences in Output by each LLM. GPT-4 emphasized
SQL-centric improvements, such as indexing and query op-
timization, while Claude AI focused on infrastructure-level
strategies like connection pooling, caching, and batch process-
ing. Claude’s suggestions were more aligned with high-load,
real-time application needs, but neither model offered detailed
query-level fixes that could be applied directly.

Prompt Iterations and Changes. In this step, prompt iteration
was unnecessary, as both models provided consistent outputs
across attempts. However, the general insights gathered in-
formed the design of future prompts, where specific code
examples were incorporated to target more precise solutions.

Impact on Performance. No immediate performance gains
were realized due to the generalized nature of the recommen-
dations. However, the Zero-shot learning insights offered a
foundation for refining prompts in subsequent phases, guiding
the approach toward more targeted, actionable suggestions.

B. One-Shot Learning Approach

The second experiment involved one-shot learning, where
the models were provided with a small code snippet with
an inefficient SQL query to offer more focused and context-
specific recommendations. This approach allowed the models
to analyze a specific, real-world instance of a poorly perform-
ing API and generate targeted optimizations. The one-shot
prompt was:



Optimize the following Node.js API for reduced response
time. This API takes 20-30 seconds to fetch data due to
SQL query inefficiency:

<code in Listing 1>

Recommendations. In response, both models provided more
tailored suggestions:

• GPT-4 provided a comprehensive analysis of the query’s
inefficiencies, targeting issues that commonly impact
performance, such as unnecessary complexity in sub-
queries, redundant SQL variables, and multiple joins
across tables. Its response emphasized restructuring these
elements by simplifying the query to enhance readability
and streamline processing. It suggested reducing joins
by consolidating key information into fewer steps, thus
eliminating nested sub-queries and improving overall
clarity. The use of NULLIF in aggregations helped pre-
vent division errors, leading to smoother handling of
null values in calculation-heavy operations. Additionally,
GPT-4 optimized the JavaScript layer by moving from
Promise chaining to async/await, enhancing readability
and reducing asynchronous complexity. These improve-
ments addressed specific points of inefficiency while
maintaining the query’s original purpose, providing prac-
tical changes that resulted in a noticeable, though modest,
improvement in query execution time.

• Claude AI Claude AI delivered a thorough breakdown of
performance issues and offered more infrastructure-based
solutions aimed at SQL efficiency. Key recommendations
included converting unnecessary unions to more optimal
alternatives and adding indexes to accelerate frequently
queried columns. By organizing the SQL structure into
logical segments, Claude’s optimization minimized table
scans, avoided excessive nested sub-queries, and handled
date conversions more efficiently with CONVERT instead
of CAST. Additional indexes on frequently used fields
like UserID, GroupCode, and TransactionTime,
enhanced the query’s response time, making it bet-
ter suited for large datasets with heavy read opera-
tions. Claude AI also emphasized readability, using well-
defined naming conventions and a clean structure that
facilitates easier debugging and maintenance in the future.
Together, these changes improved SQL performance and
slightly reduced execution time, making the code more
maintainable and efficient.

Effectiveness. The one-shot responses from both GPT-4 and
Claude AI were effective in providing clear, actionable opti-
mizations that were easy to implement. Each model focused
on enhancing the query’s structure, with GPT-4 zeroing in on
query simplification and async processing, while Claude AI
provided a balanced approach between indexing and structure-
based optimizations. This approach made the recommenda-
tions directly implementable and beneficial, leading to a small
but measurable improvement in performance.

Listing 1. Code and SQL query used with the One-Shot prompt (changed
for compliance purpose)
const calculateAverageTransactions = (request, response,

next) => {
// Query data for specific transaction types
const environment = request.userData.environment;
const source = request.query.source;
const operatorId = request.query.operatorId;
const includeTypes = request.query.includeTypes ===

"false" ? false : true;
const actionType = request.query.actionType;
let activeUserId = request.query.operatorId;
let transactionTypes = [];

const sqlFetchCorrectUser = ‘
SELECT
MappedUserID
FROM UserMapping
WHERE UserID = @operatorId

‘;

const applyUserMapping = async () => {
return await new Promise((resolve, reject) => {
let sqlRequest = new Request(sqlFetchCorrectUser,

(error) => {
if (error) {
console.error(error);
reject(error);

}
});
sqlRequest.addParameter("operatorId",

TYPES.NVarChar, operatorId);
let mappedUserId = false;

sqlRequest.on("row", (column) => {
if (column[0].value) {
mappedUserId = column[0].value;

}
});
sqlRequest.on("requestCompleted", () => {
if (mappedUserId) {
activeUserId = mappedUserId;

}
resolve();

});
connection.execSql(sqlRequest);

});
};

const sqlFetchTransactionSummary = ‘
SELECT

CAST(TransactionTime AS DATE) AS Date,
(SUM(CASE WHEN (Operators.UserID = @operatorID)

THEN 1 ELSE 0 END) /
NULLIF(COUNT(DISTINCT(CASE WHEN
Operators.UserID = @operatorID THEN
DATEPART(HOUR, TransactionTime) END)), 0)) AS
’Operator Avg’,

(COUNT(Action)/
(COUNT(DISTINCT(SystemRecords.UserID))

*COUNT(DISTINCT(DATEPART(HOUR, TransactionTime)))))
AS ’Group Avg’

FROM (SELECT * FROM Operators UNION SELECT * FROM
TempOperators) AS Operators

LEFT JOIN UserMapping
ON Operators.UserID = UserMapping.UserID
RIGHT JOIN SystemRecords
ON CASE WHEN (UserMapping.MappedUserID IS NOT NULL)

THEN UserMapping.MappedUserID ELSE
Operators.UserID END = SystemRecords.UserID

WHERE Operators.GroupCode = (SELECT
Operators.GroupCode
FROM (SELECT * FROM Operators UNION SELECT * FROM

TempOperators) AS Operators
WHERE Operators.UserID = @operatorID

)
GROUP BY CAST(TransactionTime AS DATE)
ORDER BY CAST(TransactionTime AS DATE)‘;

};

Learning and Adaptability. Although both models offered
useful insights, neither fully adapted to the unique SQL nor



data structures specific to the SCORE APIs. Instead, they
provided solutions rooted in best practices for SQL opti-
mization. This approach helped address generic inefficiencies,
although some SCORE-specific performance challenges were
not entirely addressed, leaving room for further context-based
tuning.
Differences in Output by each LLM. GPT-4 focused on SQL
query efficiency through simplification and async operations
in JavaScript, suggesting a holistic optimization approach
that reduced overall query complexity. Meanwhile, Claude AI
placed more emphasis on robust indexing, structuring queries
logically, and using inner joins when possible to streamline
data access. Claude’s output offered a more balanced solution
for high-volume query optimization, while GPT-4’s recom-
mendations were beneficial for improving code readability and
reducing JavaScript complexity.
Prompt Iterations and Changes. The responses from both
models were consistent, yielding useful insights on the first
attempt. The clear recommendations allowed prompt iteration
to focus on more context-specific optimizations in subsequent
phases. These outputs confirmed the effectiveness of one-shot
prompting with code-based examples for quickly identifying
SQL and API improvements.
Impact on Performance. The one-shot learning suggestions
led to a moderate performance boost, with query execution
showing slight improvement after the recommended indexing
and restructuring were implemented. Though these gains were
not transformative, the optimizations established a solid foun-
dation for further performance tuning and helped shape a more
refined approach for future prompts.

C. Few-Shot Learning Approach

The third experiment was with the few-shot learning, where
the LLMs were provided with the major API codebase.
This included the API logic, database interaction details if
required, and context about how different modules interacted.
By presenting the models with the major system, we aimed
to evaluate their capacity to analyze and optimize a more
complex, integrated system. In this research case prompt, we
are giving query based on one shot learning approach to
improve the API that we are considering here, The Few-shot
prompt was:

Here is the code with 2 faulty queries for the Node.js
API, which is performing poorly:

<code in Listing 2>

Recommendations. In response, both LLMs provided more
tailored suggestions:

• GPT-4 highlighted several key inefficiencies in the orig-
inal SQL queries (sqlFetchTotalTransactions
and sqlFetchTransactionsByType). Notable is-
sues included repeated logic, where both queries exhib-
ited similar structures with redundant sub-queries and

Listing 2. SQL queries used with the Few-Shot prompt (changed for
compliance purpose)
const sqlFetchTotalTransactions = ‘

SELECT
CAST(EventTime AS DATE) AS Date,
(SUM(CASE WHEN (Operators.OperatorID = @operatorID)

THEN 1 ELSE 0 END) /
NULLIF(COUNT(DISTINCT(CASE WHEN
Operators.OperatorID = @operatorID THEN
DATEPART(HOUR, EventTime) END)), 0)) AS
’Operator Avg’,

(COUNT(Event)/(COUNT(DISTINCT(Recordings.OperatorID))*
COUNT(DISTINCT(DATEPART(HOUR, EventTime))))) AS

’Group Avg’
FROM (SELECT * FROM Operators UNION SELECT * FROM

TempOperators) AS Operators
LEFT JOIN UserMapping
ON Operators.OperatorID = UserMapping.OperatorID
RIGHT JOIN Recordings
ON CASE WHEN (UserMapping.MappedOperatorID IS NOT

NULL) THEN UserMapping.MappedOperatorID ELSE
Operators.OperatorID END =
Recordings.OperatorID

WHERE Operators.GroupID = (SELECT
Operators.GroupID
FROM (SELECT * FROM Operators UNION SELECT *

FROM TempOperators) AS Operators
WHERE Operators.OperatorID = @operatorID

)
GROUP BY CAST(EventTime AS DATE)
ORDER BY CAST(EventTime AS DATE)‘;

const sqlFetchTransactionsByType = ‘
SELECT

CAST(EventTime AS DATE) AS Date,
(SUM(CASE WHEN (Operators.OperatorID = @operatorID)

THEN 1 ELSE 0 END) /
NULLIF(COUNT(DISTINCT(CASE WHEN
Operators.OperatorID = @operatorID THEN
DATEPART(HOUR, EventTime) END)), 0)) AS
’Operator Avg’,

(COUNT(Event)/(COUNT(DISTINCT(Recordings.OperatorID))*
COUNT(DISTINCT(DATEPART(HOUR, EventTime))))) AS

’Group Avg’
FROM (SELECT * FROM Operators UNION SELECT * FROM

TempOperators) AS Operators
LEFT JOIN UserMapping
ON Operators.OperatorID = UserMapping.OperatorID
RIGHT JOIN Recordings
ON CASE WHEN (UserMapping.MappedOperatorID IS NOT

NULL) THEN UserMapping.MappedOperatorID ELSE
Operators.OperatorID END =
Recordings.OperatorID

WHERE Operators.GroupID = (SELECT
Operators.GroupID
FROM (SELECT * FROM Operators UNION SELECT *

FROM TempOperators) AS Operators
WHERE Operators.OperatorID = @operatorID

)
AND
Recordings.EventType = @eventType

GROUP BY CAST(EventTime AS DATE)
ORDER BY CAST(EventTime AS DATE)‘;

joins, leading to unnecessary complexity and potential
performance degradation. The use of the UNION operator
was criticized for requiring complete scans of both the
Operators and TempOperators tables, which is
computationally expensive. Additionally, complex JOIN
conditions, particularly the conditional joins involving
the UserMapping table, were identified as areas for
simplification. The nested sub-query for retrieving the
GroupID was also flagged for being repetitively exe-
cuted, adding overhead without necessity. To optimize
these queries, GPT-4 recommended an enhanced ver-
sion that employed a Common Table Expression (CTE)
called OperatorData, which consolidated the union



of Operators and TempOperators for reuse in
both queries. This significantly reduced redundancy and
improved clarity. The use of COALESCE in JOIN condi-
tions was introduced to streamline the logic and enhance
readability. By implementing UNION ALL, the opti-
mized version bypassed the overhead of duplicate checks
since there were no expected duplicates between the
two tables. Additionally, the recommendation to multiply
counts by 1.0 ensured that division operations yielded
floating-point results, which are more suitable for aver-
aging calculations. Overall, GPT-4’s proposed changes
aimed to enhance the performance and maintainability
of the queries by leveraging SQL best practices.

• Claude AI conducted a similar analysis and iden-
tified key areas for optimization. The issues in-
cluded redundant sub-queries in both the FROM and
WHERE clauses, multiple casting operations on the
EventTime, unnecessary UNION operations, and com-
plex CASE statements that could be simplified. To
tackle these problems, Claude AI proposed creating two
CTEs: (i) CombinedOperators for consolidating the
Operators and TempOperators tables to avoid
repeated UNION operations, and (ii) UserGroup to
streamline the retrieval of the user’s group identifier. In
the optimized version, Claude AI suggested using the
DATE() function instead of repeated CAST operations on
EventTime, which enhanced performance. The queries
were designed to compute operator and group transac-
tion averages over time, with simplified joins replacing
complex conditions. The join structure was refined by
utilizing COALESCE for better clarity in operator ID
mapping and removing redundant operations. Suggested
indexes were also provided to improve execution speed,
focusing on commonly queried fields across the involved
tables. Claude AI’s formatting and organization of the
code improved readability, which facilitates maintenance
and debugging.

Effectiveness. Both GPT-4 and Claude AI produced optimized
SQL queries that addressed the identified performance issues,
such as redundant sub-queries and complex join conditions.
While GPT-4 provided a more streamlined approach using
a Common Table Expression (CTE) to consolidate employee
data, Claude AI also leveraged CTEs but focused on improving
readability and maintainability through a clearer structure. The
optimized versions offered by both models resulted in reduced
complexity and improved clarity, enhancing the overall ef-
fectiveness of the queries in calculating operators and group
averages.

Learning and Adaptability. Despite the strengths of both
LLMs, neither demonstrated the ability to learn nor adapt
based on specific SQL or API structures provided in the
prompts. Instead, both relied on general best practices and
optimizations common to SQL query performance, as it was
doing in the one shot learning approach. While the suggestions
were insightful, they lacked customization to the unique con-

text of the queries, indicating a limitation in the adaptability
of the LLMs to specific codebases or frameworks.

Differences in Output by each LLM. The outputs from
GPT-4 and Claude AI exhibited notable differences in their
approaches. GPT-4 emphasized refactoring through the use
of CTEs to reduce redundancy and improve the efficiency of
joins, while Claude AI focused on enhancing readability and
maintaining a structured format, also utilizing CTEs. Addition-
ally, Claude AI proposed suggested indexes for performance
improvement, while GPT-4 concentrated more on optimizing
the existing query structure. This divergence in focus high-
lights the varying strengths of each model in tackling similar
problems.

Prompt Iterations and Changes. In this phase, there were
three multiple iterations of prompts done, to have both LLMs
generate effective output in response to the provided queries.
The insights from the initial prompts helped shape subsequent
designs, but both LLMs offered a cohesive response that met
the requirements of the task.

Impact on Performance. The optimizations proposed by both
LLMs resulted in marginal improvements in query perfor-
mance. The elimination of redundancy and simplification of
join logic should lead to better execution times. Although spe-
cific performance metrics were assessed for a particular API
and were improved considerably post-implementation, there
is still scope to quantify these improvements accurately. The
refined queries were designed to be more efficient, contributing
to an overall enhanced performance in processing transaction
data while maintaining the original functionality of the queries.
Listing 3 presents the optimized query provided by GPT-4:

D. Performance Monitoring and Evaluation.

To evaluate the effectiveness of the LLMs’ optimizations,
we implemented their suggestions and monitored the API’s
performance. Key metrics included API response time re-
duction, resource utilization improvements, and database ef-
ficiency.

GPT-4’s optimizations resulted in a significant reduction in
API response times, with the most noticeable improvement
in database query performance due to the implementation of
pagination and batch processing. In our research API, ITS
response times dropped from 26 seconds to approximately 3
seconds, a 300% improvement and more APIs too had the
similar impact. Claude AI’s architectural suggestions, while
more ambitious, laid the groundwork for future scalability.
Although Claude AI’s changes were more complex to im-
plement, they offered valuable insights into how the system
could be restructured to handle higher traffic volumes and
improve long-term performance. In conclusion, GPT-4 proved
to be highly effective in providing granular, context-specific
optimizations that were easy to implement and resulted in
immediate performance gains. Claude AI, on the other hand,
offered a more strategic, architecture-level view, which would
be beneficial for future scalability and system-wide improve-
ments. Both LLMs demonstrated their potential in optimizing



Listing 3. Optimized Code Provided by GPT-4 (changed for compliance
purpose)
-- Optimized Common Table Expression for employees
WITH OperatorData AS (

SELECT
OperatorID,
GroupID,
DATEPART(HOUR, EventTime) AS EventHour,
EventTime

FROM
(SELECT * FROM Operators UNION ALL SELECT * FROM

TempOperators) AS Operators
)

SELECT
CAST(rec.EventTime AS DATE) AS Date,
(SUM(CASE WHEN op.OperatorID = @operatorID THEN 1 ELSE

0 END) * 1.0 /
NULLIF(COUNT(DISTINCT CASE WHEN op.OperatorID =

@operatorID THEN op.EventHour END), 0)) AS
’Operator Avg’,

(COUNT(rec.Event) * 1.0 /
NULLIF(COUNT(DISTINCT rec.OperatorID) *

COUNT(DISTINCT op.EventHour), 0)) AS ’Group Avg’
FROM

Recordings rec
JOIN

OperatorData op ON op.OperatorID =
COALESCE(um.MappedOperatorID, op.OperatorID)

LEFT JOIN
UserMapping um ON op.OperatorID = um.OperatorID

WHERE
op.GroupID = (SELECT GroupID FROM OperatorData WHERE

OperatorID = @operatorID LIMIT 1)
GROUP BY

CAST(rec.EventTime AS DATE)
ORDER BY

CAST(rec.EventTime AS DATE);

-- For transactions by event type
SELECT

CAST(rec.EventTime AS DATE) AS Date,
(SUM(CASE WHEN op.OperatorID = @operatorID THEN 1 ELSE

0 END) * 1.0 /
NULLIF(COUNT(DISTINCT CASE WHEN op.OperatorID =

@operatorID THEN op.EventHour END), 0)) AS
’Operator Avg’,

(COUNT(rec.Event) * 1.0 /
NULLIF(COUNT(DISTINCT rec.OperatorID) *

COUNT(DISTINCT op.EventHour), 0)) AS ’Group Avg’
FROM

Recordings rec
JOIN

OperatorData op ON op.OperatorID =
COALESCE(um.MappedOperatorID, op.OperatorID)

LEFT JOIN
UserMapping um ON op.OperatorID = um.OperatorID

WHERE
op.GroupID = (SELECT GroupID FROM OperatorData WHERE

OperatorID = @operatorID LIMIT 1)
AND
rec.EventType = @eventType

GROUP BY
CAST(rec.EventTime AS DATE)

ORDER BY
CAST(rec.EventTime AS DATE);

API performance through a structured, step-by-step approach,
each excelling in different aspects of the optimization process.

V. LESSONS FOR PRACTITIONERS

From our experiences on conducting this work, we derive
practical lessons valuable for practitioners and researchers on
exploring LLMs for re-engineering and optimization tasks.
Prompt Strategies. Using a range of prompt strategies, namely
zero-shot, one-shot, and few-shot learning, proved beneficial

in guiding the models to produce increasingly actionable and
context-aware recommendations:

• Zero-Shot Learning was useful for high-level suggestions,
but yielded generalized advice that was less tailored
to specific scenarios, requiring further refinement to be
directly implementable.

• One-Shot Learning, by incorporating a single example,
improved relevance and specificity, allowing the model
to understand the query structure better and generate
recommendations with some contextual alignment.

• Few-Shot Learning was particularly effective, providing
the model with multiple examples to draw from, leading
to detailed, highly contextualized optimizations. This
strategy resulted in concrete improvements in query effi-
ciency and execution times when applied to our SQL and
API queries. Practitioners should invest time in creating
well-structured prompt sequences (with several exam-
ples), which greatly enhance the model’s understanding
and output quality.

Exploring Different LLMs. Experimenting with GPT-4 and
Claude AI highlighted the strengths and distinct focuses
each model brought to query optimization. This diversity
in LLMs allowed for a broader exploration of performance
solutions. GPT-4 provided deeper insights into SQL-specific
improvements, with a focus on query refinement techniques
such as indexing, join optimization, and sub-query reduction.
These solutions were particularly useful for addressing SQL
bottlenecks at the code level. Claude AI offered comple-
mentary perspectives, including infrastructure-level sugges-
tions and efficient use of database features like connection
pooling, making it especially suited for high-load scenarios.
Recommendation: Practitioners should consider using multiple
models in tandem to harness a broader range of optimization
techniques, especially for complex tasks where code-level and
infrastructure improvements are both crucial.

These strategies underscore the importance of prompt de-
sign and model selection in achieving meaningful performance
improvements. By carefully choosing prompt strategies and
exploring various models, practitioners can leverage LLMs
effectively for tailored and impactful optimization.

Refining LLM Solutions. The solutions generated by LLMs,
while insightful, often required manual refinement and iter-
ative adjustments to fit seamlessly into the existing code-
base. For instance, when the models recommended SQL
optimizations, we had to manually integrate these solutions
into the code, addressing any discrepancies with the system’s
architecture or business logic. Furthermore, LLMs sometimes
produced overly generalized or impractical solutions that
didn’t fully align with the constraints of the SCORE system’s
legacy infrastructure. In such cases, we refined the solutions
by adjusting the models’ outputs and re-testing the modified
code multiple times. This iterative process ensured that the
LLM-generated suggestions were tailored to meet the specific
requirements of the platform while enhancing overall perfor-
mance. Practitioners should anticipate this manual refinement



process, as it bridges the gap between AI recommendations
and real-world implementation.

LLMs for Different Tasks in Legacy System Modernization.
Our experiences demonstrate the potential for LLMs in various
aspects of legacy system modernization. While this project
focused on API optimization, the insights extended into other
areas, such as UX improvement, scalability planning, and
database efficiency. Here are some key observations:

• API Optimization: LLMs provided effective, actionable
suggestions for improving API response times, espe-
cially in query optimization and data retrieval techniques.
Techniques such as pagination, query restructuring, and
indexing recommendations were immediately useful and
directly impacted performance.

• UX Improvements: LLMs’ suggestions in UI modular-
ization and interface simplification showed potential. By
refining UI-related prompts, developers can obtain design
recommendations for user engagement, accessibility, and
efficiency, improving the UX of legacy systems.

• Scalability: LLMs were effective in providing high-level
recommendations for architectural improvements related
to scalability. For instance, Claude AI suggested moving
to a microservice architecture for handling high data
volumes and traffic, though this was outside the scope
of our legacy system’s immediate needs. However, these
insights serve as valuable guidelines for planning long-
term scalability in legacy systems.

• Database Efficiency: Database optimizations suggested
by the LLMs, such as implementing indexing strategies
and refining query structures, directly contributed to
performance gains. The models also suggested adopting
asynchronous processing for batch operations, which
would support larger-scale data processing while mini-
mizing impact on the system’s overall performance.

Each of these areas shows how LLMs can be applied to
several re-engineering tasks. Practitioners looking to modern-
ize other legacy system components can leverage LLMs for
broader guidance, from back-end performance enhancements
to front-end design strategies.

Constraints Related to Token Size and Request Limits. A
significant limitation encountered was the token size constraint
imposed by GPT-4 and Claude AI, which limits the amount
of code and context that can be processed in a single request.
These restrictions required adjustments, especially during the
Few-shot learning phase, where the models were presented
with full API codebases and SQL queries. Both GPT-4 and
Claude AI have input length limitations, with GPT-4 accepting
fewer tokens than Claude AI, impacting how much information
could be provided for comprehensive analysis.

To work around this, we split the code into segments and
adjusted prompts to focus on one aspect of the API at a time.
Although this process allowed us to stay within the token
limits, it also increased the time spent on prompt refinement,
as multiple iterations were often needed to yield a cohesive
solution. Practitioners should be prepared for these token lim-

itations, particularly when dealing with large codebases, and
should consider structuring prompts in manageable segments
to ensure effective LLM analysis.

Data Privacy and Security Concerns in Prompts. One of
the essential considerations when using LLMs, especially
for business-critical systems, is data privacy and security. In
this project, we ensured that sensitive information, such as
employee records or proprietary company data, was excluded
from prompts. Instead, anonymized or generalized data was
used to illustrate API and database structures without exposing
personal information.

Practitioners should exercise caution when sharing data in
prompts, as LLMs process requests through external APIs
that may store or analyze inputs for model improvement.
Organizations handling sensitive or proprietary data should
explore options for fine-tuning LLMs on private datasets
or consider deploying on-premise models, when possible, to
maintain data security. Establishing clear guidelines on data
handling in LLM interactions can prevent inadvertent exposure
of confidential information.

VI. THREATS TO VALIDITY

Several potential threats to the validity of our findings must
be considered when interpreting the results of this study. First,
the use of LLMs, such as GPT-4 and Claude AI, for API
optimization is still an emerging field, and the effectiveness
of their suggestions may vary depending on the complexity
and specificity of the task. Although both LLMs provided
useful insights for improving the performance of the Node.js
APIs, their responses were highly dependent on the quality
and clarity of the prompts given. This introduces a potential
threat of bias in the prompt engineering process, as the way
we framed the optimization tasks could have influenced the
LLMs’ outputs.

Although we implemented and evaluated many of the
optimizations suggested by the models, we did not conduct
a large-scale comparative study across multiple projects or
domains. The optimizations were applied solely to the SCORE
system’s APIs, which may limit the generalizability of our
findings. The results may not fully extend to other types of
APIs or systems with different architectures, workloads, or
performance bottlenecks.

Another threat is related to the evaluation metrics used
to assess the models’ performance. We primarily focused on
API response times and database efficiency, but other factors
such as code maintainability, scalability, and security were not
deeply explored. The optimizations proposed by the LLMs
may have unintended consequences in these areas that were
not captured in our performance monitoring.

The black-box nature of LLMs poses a threat to understand-
ing the rationale behind some of their recommendations. While
GPT-4 and Claude AI provided useful suggestions, the reason-
ing behind certain architectural changes, such as the adoption
of microservices or asynchronous queues, may require deeper
domain knowledge that was not directly verifiable within the



scope of this study. This lack of transparency could lead to
trust issues in critical system environments.

Finally, the evaluation timeframe was limited, and long-
term monitoring of the optimizations was not conducted. The
improvements observed in the short term, such as reduced
response times, may not hold up under sustained or increased
load, which introduces a threat to the internal validity of the
results. Future work should include a more comprehensive
evaluation over time to assess the robustness and sustainability
of the applied optimizations.

VII. RELATED WORK

Large Language Models (LLMs) have been explored in
various aspects of software engineering, such as code under-
standing, code generation, review, requirements engineering,
and optimization [18]–[20]. Tools like GitHub Copilot and
Amazon CodeWhisperer illustrate the power of LLMs to
generate code suggestions, automate syntax correction, and ex-
pedite debugging [21], [22]. By interpreting natural-language
prompts, these tools help developers by quickly generating
relevant code snippets and addressing common coding issues,
which in turn reduces time spent on repetitive tasks and
accelerates early development stages [23]. This capability has
proven especially useful for both novice and experienced
developers in improving productivity [24].

Sauvola et al. [19] explores the application of AI-driven au-
tomation in legacy software maintenance, traditional software
operations, and networked applications. Their study shows
that generative AI, including LLMs, can improve productivity,
cut maintenance costs, and enable developers to handle com-
plex maintenance and modernization tasks dynamically. By
supporting parallelized development processes and handling
repetitive updates, generative AI tools show promise for large-
scale software modernization, allowing legacy systems to be
updated more efficiently and effectively.

In the industry, Ericsson’s Llama-based chatbot employs
RAG to answer complex CI/CD-related questions, retrieving
relevant documentation and technical details to guide en-
gineers in deployment and troubleshooting [24]. Retrieval-
Augmented Generation (RAG) frameworks further enhance
LLM applications by incorporating document retrieval to
respond to specific, context-driven queries [25]. Similarly,
QAssist [26] uses RAG to assist software engineers in ana-
lyzing project requirements, retrieving pertinent information
from specifications to support complex decision-making.

In team-based development and educational settings, LLMs
have proven useful for collaborative tasks, including initial
project setup, syntax resolution, and debugging. A study by
Rasnayaka et al. [21] examined the role of LLMs in student-
led software projects, where LLMs facilitated foundational
code generation and expedited the debugging process. LLMs
also supports requirements engineering. Krishna et al. [20]
evaluated GPT-4 and CodeLlama in generating Software Re-
quirements Specifications (SRS) documents, demonstrating
that LLMs can produce draft requirements that closely align
with those created by entry-level software engineers. However,

in both cases, manual oversight and refinement were necessary
to ensure that the results met specific project standards.

The COLLMS framework by Truong et al. [27] addresses
the need for coordinating LLMs with platform-specific knowl-
edge in complex development environments like edge-cloud
systems. COLLMS integrates LLM-driven automation with
platform knowledge to manage deployment policies, observ-
ability, and architectural configurations, especially for edge-
cloud applications. This integration highlights a key limitation
in using standalone LLMs for complex systems and empha-
sizes the need for contextual data and platform knowledge to
make LLM-driven automation more effective.

These studies collectively highlight the expanding role of
LLMs in automating various software development workflows,
including legacy system modernization, API optimization,
CI/CD integration, and database performance. By combin-
ing LLM insights with RAG frameworks, platform-specific
knowledge, and role-based collaboration, these tools enable
a new level of efficiency and scalability in software engineer-
ing, paving the way for comprehensive, AI-assisted software
modernization.

VIII. CONCLUSION

This research demonstrates the potential of using LLMs
to optimize Node.js APIs, showing significant improvements
in both performance and efficiency. By employing different
learning paradigms (i.e., zero-shot, one-shot, and few-shot
learning) we were able to experiment the capabilities of GPT-
4 and Claude AI under various levels of context and input
details. The results indicated that both LLMs can provide
valuable insights and actionable suggestions for improving
API performance, with GPT-4 excelling in code-specific op-
timizations and Claude AI offering broader architectural rec-
ommendations. By the application of these optimizations, we
achieved a dramatic reduction in API response times for one
of our research APIs (from 26 seconds to 3 seconds) and
improved the overall efficiency of the system.

For developers and teams considering LLMs for software
optimization tasks, this study highlights several key lessons.
First, prompt design is critical; clear and well-structured
prompts that provide enough context can significantly improve
the relevance of the LLMs’ recommendations. Second, while
LLMs can offer powerful optimizations, they should be seen
as augmentative tools rather than standalone solutions. Devel-
opers must critically evaluate and implement the suggestions,
as AI-generated optimizations may sometimes require deeper
human intervention, especially when dealing with complex
system dependencies or legacy architectures. Lastly, incor-
porating LLMs into regular re-engineering and optimization
workflows can provide continuous benefits, offering fresh
perspectives and reducing the cognitive load on developers
during performance tuning or architectural decision-making.

In conclusion, our work suggests that AI-driven tools are
valuable in software re-engineering and optimization. When
used correctly, LLMs can substantially enhance the quality,
scalability, and maintainability of applications.
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