
A Multi-Criteria Strategy for Redesigning Legacy
Features as Microservices: An Industrial Case Study

Wesley K. G. Assunção∗†, Thelma Elita Colanzi∗‡, Luiz Carvalho∗, Juliana Alves Pereira∗,
Alessandro Garcia∗, Maria Julia de Lima§, Carlos Lucena∗

∗DI – Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.
†PPGComp – Western Paraná State University, Cascavel, Brazil.

‡DIN – State University of Maringá, Maringá, Brazil.
§Tecgraf Institute – Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.

Abstract—Microservices are small and autonomous services
that communicate through lightweight protocols. Companies have
often been adopting microservices to incrementally redesign
legacy systems as part of a modernization process. Microservices
promote better reuse and customization of existing features
while increasing business capabilities, if appropriate design deci-
sions are made. There are some partially-automated approaches
supporting the re-design of legacy features into microservices.
However, they fail in covering two key aspects: (i) provide an
architectural design of the features being redesigned, and (ii)
simultaneously support relevant criteria, e.g., feature modular-
ization and decrease of network communication overhead. Also,
these two aspects tend to be poorly discussed along industrial
case studies. To fulfill these gaps, we propose a redesign strategy
to support the re-engineering of features legacy code as mi-
croservices. This strategy covers key possibly-conflicting criteria
on microservice-based architectures. We employ search-based
optimization to deal with such conflicting criteria. The output
of the strategy is a set of redesign candidates of legacy features
as microservices. We reflect upon the benefits and drawbacks
of the proposed strategy through an industrial case study. In
particular, we perform an in-depth analysis of the resulting
microservice candidates, and a discussion about their potential
for customization and reuse. The reflections/discussions are also
supported by observations of developers involved in the process.

Index Terms—microservice architecture, legacy systems, soft-
ware evolution, search-based software engineering.

I. INTRODUCTION

Despite being often outdated or obsolete, legacy systems
represent a massive and long-term investment in organizations
regardless of their business domain. Modernization processes
have often required the redesign of legacy systems into
microservice architectures [1, 2, 3, 4, 5]. A microservice
is an autonomous small service that communicates through
lightweight protocols [6, 7]. Microservices can modularize
existing features [8], otherwise tangled in the legacy code,
and make them available as new business capabilities through
the network [6, 7]. To this end, maintainers have to decide on
which and how existing features in the legacy system should
be redesigned as microservices. The redesign process consists
of both identifying and analyzing the existing structure of each
legacy feature – often structurally degraded – in order to define
a new design structure, i.e., the resulting microservice-based

redesign. However, redesigning legacy features into microser-
vices is a quite complex activity for several reasons [9].

The redesign activity should guide: (i) the identification of
features (and possibly subfeatures) that are likely to be aligned
with the business capabilities, (ii) the proper modularization
of such features into microservices, (iii) the simultaneous sat-
isfaction of influencing criteria, such as cohesion and network
overhead [10], (iv) the generation of alternative designs with
different levels of microservice decomposition – alternatives
are essential to support maintainers in choosing the one that
fits best their needs, and (v) the redesign of features that are
likely to be reusable and customizable.

There are some partially-automated approaches for support-
ing the redesign of existing systems into microservices [11,
12, 13, 14] (Section II). However, they are not feature-driven,
i.e., developers cannot select an initial set of features to be
redesigned as microservices. These approaches also do not
support the further decomposition of candidate features into
subfeatures, which improve modularization and the alignment
with new business capabilities. There are several approaches
for feature modularization [15], but they often support only
one or two criteria [16, 17], and do not master microservice-
specific criteria, e.g., network overhead. Moreover, the evalua-
tion of such approaches does not cover the five guidance needs
mentioned above and also neither consider industrial systems,
in which access to actual developers is possible.

To address these gaps, we propose a semi-automated strat-
egy for assisting software engineers along with microservice-
based redesign of legacy features (Section IV). Here, redesign
encompasses the identification of boundaries in the source
code, where the legacy system should be split in microser-
vices. Our strategy is based on: (i) both static and dynamic
analyses of the legacy code, and (ii) search-based multi-criteria
optimization to deal with four possibly-conflicting criteria
to be satisfied while redesigning features as microservices.
We reflect upon the benefits and drawbacks of the proposed
strategy through an industrial case study (Section III). In
particular, we perform an in-depth analysis of the resulting
redesign candidates and discuss their potential for feature
customization and reuse (Section VI). Such reflections are also
based on observations of developers of the legacy system.

In summary, our contributions are as follows:

• A feature-driven strategy for microservice identification
based on optimization of four criteria.

• A qualitative empirical study demonstrates that all in-
terviewed developers agree that the generated candidate
microservices are aligned with the business capabilities.

• Experimental evidence reveals that reuse and customiza-
tion opportunities can be better achieved with our strat-
egy. For example, developers observed three types of
customization opportunities (interface customization, mi-
croservice specialization, and disabling of a microservice)
and envisioned reuse opportunities of four microservices.

II. RELATED WORK

Several studies report on empirical evidence about the
benefits of migrating legacy systems to a microservice archi-
tecture [1, 2, 3, 4, 5, 18, 19]. In spite of known benefits,
existing approaches are still at an early stage as they provide
very limited support. They do not focus on the entire redesign
process to achieve a microservice architecture. Besides, the
evaluation of these approaches are often conducted with small
toy-example applications. They are not based on case studies
with access to the developers of industrial systems under mi-
gration. Finally, existing approaches are mostly based on only
one or two redesign criteria and, as they are not feature-driven,
it is not possible to select which features should be redesigned
as microservices, hampering both feature modularization and
alignment with new business capabilities. Existing approaches
cannot be easily adapted to be feature-driven because it is
necessary to modify either their input or redesign criteria.

Nunes et al. [20] and Henry & Ridene [9] identify mi-
croservices based on domain concepts derived with the use
of clustering algorithms. However, microservice identification
based only on domain boundaries of the legacy system often
leads to an explosion of microservices [9]. Many of these
microservices are not aligned with the business capabilities of
the organization. Moreover, these approaches solely present an
illustrative example from an online shop application. Similar to
our work, some approaches [11, 12, 13, 14] use search-based
algorithms, considering one or two criteria, limited to coupling
and cohesion. However, cohesion in a module (e.g. a class)
code differs from cohesion in features, i.e., the feature code can
be scattered and tangled across program modules. Thus, these
approaches are not feature-driven and do not consider network
overhead – a relevant criterion for microservice architectures.

Li et al. [21] propose a dataflow-driven approach to identify
microservices. Their approach was also evaluated on an indus-
trial case study, but they only consider coupling and cohesion
metrics. Pigazzini et al. [22] and Megargel et al. [23] propose a
similar approach. Interestingly, Megargel et al. [23] mentioned
reuse as post-migration benefits as they could compose new
products without creating new microservices. However, their
process was evaluated only in an illustrative system. On the
work of Maisto et al. [24], the identification of microservices is
strictly based on coupling between classes and no evaluation
is performed. Overall, these approaches rely only on static
analysis of the legacy code and are not feature-driven.

Tizzei et al. [4] reported on a case study of migrating
a legacy system to a microservice-based product line to
minimize maintenance efforts, support scalability, independent
deployment, and configurability. However, the migration was
performed manually, not documented in detail, and based on
experts’ knowledge. Silva et al. [25] propose a feature-driven
process, but it was also a manual and expert-dependent. Still,
the evaluation was conducted on a small eShop system.

In summary, our work has a complementary nature to pre-
vious research by including: (i) a case study with an industrial
legacy system; (ii) interview with developers to define the set
of relevant criteria for generating microservices; (iii) the use
of well-defined criteria from the field of microservices; and
(iv) a qualitative analysis of the microservice candidates from
the reuse and customization perspectives.

III. CASE STUDY

Our case study relies on a legacy system developed and
maintained at Tecgraf Institute, an institute responsible for
providing software products to oil and gas industries. This
legacy system is predominantly written in Java and has been
maintained for more than 15 years. The system provides a
shared environment for different users, e.g., engineers and
scientists, to maintain and execute complex algorithms and
share their results. These results include algorithm executions,
algorithm configurations, binaries, to cite some.

In its inception, the legacy system was designed to be a
framework that allows customization to different customers.
However, after many years of maintenance, its architecture
degraded. Currently, the system exhibits limited feature mod-
ularization, i.e., high tangling and scattering of features. Fur-
thermore, it has scarce documentation, which consists of few
diagrams of the old architecture and some documented APIs.
Developers reported that its maintenance is very complex
and time-consuming. There is a limitation to incorporate new
technologies such as the use of cloud computing resources.

The legacy system originally was developed to be used
in a private network, with on-premise installations and a
limited number of users. However, about three years ago, the
customers asked for new requirements such as making the
system available on the internet, providing a web interface,
and using a cloud infrastructure. Based on that, the institute
decided to redesign the legacy system into microservices.
In a first attempt, the developers tried to perform a manual
analysis of the source code to identify possible features to be
extracted into microservices by considering three main crite-
ria: coupling, cohesion, and feature modularization. However,
this manual analysis required a high effort from developers
due to system complexity and size. To reduce effort, visual
tools were used to represent classes and their relations. The
developers also gave up this strategy as the system presents
poor modularization, i.e., large class and feature scattering,
hindering the understanding of microservices boundaries.

Our study focus on three major features, which are related
to the business capabilities of high value for clients. These
features have at least two subfeatures, 180 classes and 1,038

A: Representation
of the Legacy

System

D: Selection of a
Redesigned
Architecture
Candidate

Graph-
Representation

Selected
Criteria

Selected
Redesigned
Architecture

B: Definition of
Criteria for

Microservice
Identification

C: Automatic
Identification of

Microservice
Boundaries

Legacy Code

Number of
Microservices

Coupling, Cohesion,
Network Overhead,

Feature Modularization

Redesigned
Architecture
Candidates

Legend

User Input Output

Step Flow

Features to Redesign

Fig. 1. Overview of the Proposed Redesign Strategy

methods associated with their implementation in the legacy
code. Each feature provides the operations and data as follows:
Authentication: verifies the identity of the users. This feature
includes the creation and validation of tokens, verification of
login and password, update of password, and related simple
information about the system’s users. Source codes related to
this feature are used extensively by almost the entire system
for validations and information retrieval.
Algorithm: manages algorithms information, including pa-
rameters, binary, documents, and connection points with other
algorithms. Also, this feature store algorithm’s output.
Project: provides a collaborative environment among the
system’s users to share projects and their metadata.

IV. PROPOSED REDESIGN STRATEGY

In the context of our work, redesign is the process of
identifying and analyzing the structure of existing features of
a legacy system in order to define a new microservice-based
design of those features. Redesigning features as microservices
requires considering some aspects related to the structure
of the legacy system and aspects of the new architectural
style, namely the microservice architectural style [26]. The
existing features may be further decomposed/modularized in
subfeatures as microservices. In this context, we propose a
strategy composed of four steps, presented in Figure 1.

The proposed redesign strategy requires as input (i) a
list of features implementing business capabilities desired to
be migrated to microservices; (ii) the source code of the
legacy system; (iii) criteria available for the identification of
microservices; and (iv) the number of desired microservices
to be generated. The first two pieces of information are used
in Step A, the third in Step B, and the last one in Step C of the
strategy. The user in Step A may also specify a set of functional
test cases related to the features taken into consideration. As
our strategy is multi-criteria, Step B requires the selection of
a subset of the four criteria to be used during the automatic
identification of microservice candidates. The output of Step D
is a redesign candidate that is an architecture where each
legacy feature is represented by a microservice or group of
microservices. The architecture also describes dependencies
among microservices, which also represents network commu-
nication paths. The four steps of the redesign strategy are
described next.

(1, 1, 30)
(4, 2, 10)

(2,2,10)
(m1, Algorithm)

(m5, Project)

(m2, Algorithm)

(m4, Project)

(m3, Algorithm)

(1, 1, 20)

(1, 1, 30) (4, 2, 10)

(2, 2, 10)

(m1, Algorithm)

(m5, Project)

(m2, Algorithm)

(m4, Project)

(m3, Algorithm)

(1, 1, 20)
MS1

MS2

Fig. 2. Graph-based representation of the legacy (method name, feature label)

A. Representation of the Legacy System

This step is responsible for representing the legacy system in
a way to enable the automatic identification of microservices.
We adopt a generic representation that allows our strategy
being applied in any legacy system. To allow a fine-grained
analysis of the legacy system, we choose a representation at
the method level. By using a method level representation, our
strategy can reach a better feature modularization, since legacy
systems often have very large files where many features are
tangled to each other.

The generic representation adopts a graph-based struc-
ture. Each vertex represents a method of the legacy sys-
tem mapped to the respective feature(s) it realizes. Each
edge represents the relationship between methods, describ-
ing estimated communication, syntactic and dynamic calls
between them. More specifically, the edges are a tuple e =
(static_calls, dynamic_calls, data_traffic). The informa-
tion can be collected from the legacy by using code analysis
tools that explore both static and dynamic characteristics. The
edge between two vertices vi and vj exists only when there is
at least a syntactic call in the vi method body to the method vj .
Figure 2 depicts an excerpt of the graph-based representation.
The graph has five vertices, each representing a method in the
legacy system under analysis. The vertices m1, m2 and m3
are part of the feature Algorithm, whereas the vertices m4
and m5 implements the feature Project. The edge (2, 2, 10)
describes the relationship between m1 and m2. The first 2 is
the number of calls from m1 to m2 found in the source code.
The second 2 is the number of calls observed when exercising
the legacy. Finally, 10 is an estimation of the size of data
exchanged between the methods. Section V-B presents details
on how we construct the graph for our case study.

B. Definition of Criteria for Microservice Identification

To define the set of relevant criteria for microservice
identification, we rely on findings from a previous survey
and interviews with experienced practitioners [10, 27]. This
study identifies the set of criteria practitioners have adopted
to extract microservices. Their criteria are based on three
different perspectives: (i) traditional criteria to evaluate the
actual structure of the legacy system, namely coupling and
cohesion; (ii) a microservice-based criterion that estimates
the network overhead that will be created when dependent
features are migrated to different microservices; and (iii) a
criterion based on feature modularization to guide the redesign
of customizable microservices.

Next, we present in detail each of these criteria that com-
poses our evaluation model for the redesign of features as

microservices. For that, let us consider MSc as a microservice
candidate and RCA a redesigned architecture candidate.
1. Coupling: this criterion measures the coupling between
microservices. The function δ(MSc), presented in Equation 1,
computes the number of static calls from methods within a
MSc to the other microservices in RCA or parts of the legacy
system. The coupling of MSc is the sum of the number of
static calls, computed by sc, from the methods in vi (that
belong to MSc) to methods in vj (that does not belong to
MSc). The total coupling of RCA is the sum of the values of
coupling associated with every MSc in a RCA as described
in Equation 2. The lower the coupling better.

δ(MSc) =

vi ∈ MSc ∧ vj /∈ MSc∑
sc(vi, vj) (1)

Coupling(RCA) =

∀MSc∈RCA∑
δ(MSc) (2)

2. Cohesion: this criterion represents how strongly related
are the methods within a microservice candidate. Cohesion is
computed by dividing the number of the static calls between
methods within the microservice boundary (the set of methods
assigned to MSc) by all possible existing static calls. The aux-
iliary boolean function ce (Equation 3) verifies the existence of
at least one static call. Then, the cohesion of MSc is computed
by C(MSc). This function divides the number of static calls
by the number of all possible dependencies between methods
of a candidate microservice, where |MSc| is the cardinality
of MSc. The denominator is the combination two-by-two of
all methods within a MSc. The total cohesion of RCA is the
sum of the cohesion associated with every MSc, according to
Equation 5. The higher the cohesion better.

ce(vi, vj) =

{
1, ifsc(vi, vj) > 0

0, otherwise
(3)

C(MSc) =

∑∀vi∈MSc∧vj∈MSc ce(vi, vj)

|MSc|(|MSc| − 1)

2

(4)

Cohesion(RCA) =

∀MSc∈RCA∑
C(MSc) (5)

3. Network Overhead: Some non-functional requirements
associated with a feature may be negatively affected by the
network communication overhead when such a feature is
modularized as a microservice. To minimize this issue, we
created a heuristic that uses dynamic information to estimate
the network overhead. The heuristic uses the size of the
objects and primitive types in the parameter list between
methods, collected during the execution of the legacy system.
In addition, the heuristic considers the overhead caused by the
protocol adopted for the future migrated microservices. For
example, the HTTP protocol adds a header to each call and,
therefore, the size of this header is considered in our heuristic.

The network overhead computation of a method (a vertex)
is presented in Equation 6, where the function P (vj) returns
the list of parameters used in the execution of the method vj .
The function sizeOf(p,m) is the size of the pth parameter
in the mth call from vi to vj . The function dt in Equation 7
computes the data traffic, where dc function is the total of
calls from method vi to method vj in execution time. The
network overhead of MSc (Equation 8) is the sum of all data
traffic within their methods, and the network overhead of RCA
(Equation 9) is defined as the sum of the network overhead
for every MSc. The lower the network overhead better.

overhead(vi, vj ,m) =

∀p∈P (vj)∑
sizeOf(p,m) (6)

dt((vi, vj)) = max
m=dc(vi,vj)
m=1 (overhead(vi, vj ,m)) (7)

O(MSc) =

∀vi∈MSc∧∀vj /∈MSc∑
dt((vi, vj))

(8)

Overhead(RCA) =

∀MSc∈RCA∑
O(MSk)

(9)

4. Feature Modularization: we propose this criterion to opti-
mize the responsibility of microservice candidates. The notion
of predominant feature was created to indicate the occurrence
of the feature that most occurs in the vertices (methods) asso-
ciated with MSc. This notion of predominant feature is used
to minimize the number of distinct features per microservice.
The goal is to reduce the tangling of features and improve
microservice structure with a single responsibility, one of the
best practices of microservice design [6]. Equation 10 defines
pf that computes the number of predominant features of MSc,
where FMSc contains the number of occurrences of each
feature K in MSc. The feature modularization of MSc is com-
puted as the maximum number of the features’ occurrences
divided by the sum of all features’ occurrences (Equation 11).
The feature modularization of RCA, defined in Equation 12,
is the sum of feature modularization for every MSc plus
the number of distinct predominant features in the |FRCA|
divided by the number of microservice |RCA|. |FRCA| is the
set of distinct features in the RCA. This division aims to avoid
a separation of the same feature by different microservices
candidates. A degree of feature modularization should be as
high as possible.

pf(MSc) = max ∀k∈FMSc
{k} (10)

f(MSc) =
pf(MSc)∑∀k∈FMSc{k}

(11)

F (RCA) =
∑

∀MSc∈RCA

f(MSc) +
|FRCA|
|RCA|

(12)

C. Automatic Identification of Microservice Boundaries

With the focus on understanding the benefits of existing
criteria to identify microservices, we conducted a preliminary
experiment [28]. In this evaluation, we concluded that the
criteria of coupling, cohesion, feature modularization, and
network overhead are relevant, interdependent, and conflicting.

Due to the interdependence and conflicting nature of the
criteria presented in Section IV-B, this step relies on a many-
objective search-based approach, adopting the Non-dominated
Sorting Genetic Algorithm III (NSGA-III) [29]. NSGA-III is
based on a genetic algorithm, which is a method for solv-
ing optimization problems that reflect the process of natural
selection [30]. This algorithm repeatedly selects the fittest in-
dividuals for reproduction in order to produce offspring of the
next generation. Over successive generations, the individuals
evolve toward a set of optimal solutions. Next, we provide
details about the search-based approach of our strategy.
Representation of Solutions: the graph-based representation
described in Section IV-A is used in this step. A redesigned
architecture candidate is composed of groups of vertex in the
graph that represent microservices (Figure3). The maximum
number of microservices and the range of vertex (methods)
allocated in each microservice is provided as input by the
software engineer (see Figure 1). The population size of
solutions for NSGA-III is set to 50 individuals.
Fitness functions: we used the evaluation model described
in Section IV-B to assess each individual/solution during
the evolutionary process of NSGA-III. Each criterion was
represented as an objective in the evaluation model. Thus, the
redesign of features as microservices was defined as a four-
objective optimization problem. For the evolutionary process
(Step C), all the objectives were designed for minimization.
Despite cohesion and feature modularization being defined
in the evaluation model as maximization, they were inverted
during the fitness computation. The maximum number of
fitness evaluation (stopping criterion) was set to 30,000.
Genetic Operators1: for the selection operator, we adopt the
binary tournament as a strategy to select individuals (solutions)
to apply the genetic modifications. Thus, a set of individuals is
randomly selected from the population, from which the indi-
vidual with the best fitness is chosen to undergo mutation [32].
The mutation operator consists of moving methods from one
microservice candidate to another one in an individual of the
population [13, 14]. In a simplified form, this operator can
be seen as an analogy of the move method refactoring [33].
The fraction of methods to be moved is configurable. The
methods and microservice candidates are randomly selected.
The mutation rate of NSGA-III is set to 0.4.

D. Selection of a Redesigned Architecture Candidate

The output generated in the previous step is a set of
solutions (redesigned architecture candidates), each one with

1It is difficult to guarantee the accuracy and consistency of architectural
designs after the crossover operator application [31]. To avoid this problem,
we rely exclusively on the use of the selection and mutation operators.

(1, 1, 30)
(4, 2, 10)

(2,2,10)
(m1, Algorithm)

(m5, Project)

(m2, Algorithm)

(m4, Project)

(m3, Algorithm)

(1, 1, 20)

(1, 1, 30) (4, 2, 10)

(2, 2, 10)

(m1, Algorithm)

(m5, Project)

(m2, Algorithm)

(m4, Project)

(m3, Algorithm)

(1, 1, 20)
MS1

MS2

Fig. 3. Microservice candidates for the excerpt of Figure 2

different trade-off among the criterion values. Each solution is
a group of vertices that represents a microservice candidate,
which implement feature(s). In this case, the software engi-
neers will need to choose which solution fits better their needs.
For example, they can select the solution that most reduces
network overhead, or most increases feature modularization.
In case they want a solution that represents the best trade-off
among the objectives, we propose the use of the indicator
named Euclidean Distance to the Ideal Solution (ED). ED
is used to find the closest solution to the best theoretical
objectives, i.e., an ideal solution [34]. Since NSGA-III was
implemented to deal with all objectives as a minimization, an
ideal solution has a value equal to 0 for all objectives.

To illustrate a possible output, we recall the example of
input presented in Figure 2. Suppose that considering the ED
indicator we chose the microservice architecture presented in
Figure 3. In this example, m1, m2, and m3 are part of the mi-
croservice MS1 , and m4 and m5 are included in the microser-
vice MS2. In this case, communication between MS1 and
MS2 will become the communication between m3 and m4
by the network. This simplified solution in Figure 3 presents
an adequate solution under the point of view of the criterion
of feature modularization. This can be observed since each
microservice candidate has a single feature, which represents
a functional requirement in the system under analysis. The
MS1 modularizes only the feature Algorithm, while the MS2

modularizes only the feature Project. Moreover, the solution
presents a higher cohesion value and lower coupling value in
the identification of two microservices to the representation
graph. However, this solution has not the optimal value for
the network overhead criterion.

This simple example illustrates the impossibility of finding
an optimal solution to the four criteria as happens for the vast
majority of systems under analysis. In this order, our strategy
generates a Pareto set (common in multi-criteria optimization)
with several solutions. In the graph representation introduced
in Figure 2, the solution where the methods m1 and m2 are
in one microservice candidate and the additional methods are
in another microservice candidate contains the lower values to
network overhead even if at the expense of the other criteria.
This solution and that one presented in Figure 3 forms a
potential Pareto set generated by our strategy.

V. EVALUATION SETUP

This section defines the empirical study conducted to eval-
uate different characteristics of our strategy, relying on an
industrial case study described in Section III.

A. Research Questions

Our work addresses the following four research questions:

RQ1. Are the modularization of features as microservices
aligned with the business capabilities of the case study?
It is important to verify whether the redesign candidates
modularize the legacy domain’s features as expected. To this
end, we ask developers to identify the predominant feature
in each microservice candidate. They check whether they
represent business capabilities (see Section IV-A).

RQ2. What are the most relevant criteria for the iden-
tification of microservice candidates in the case study?
This question aims at analyzing the criteria most used by
practitioners to evaluate the redesign candidates (see Section
IV-B). To support our analysis, we explore the expertise of
developers during the selection of a redesigned architecture.

RQ3. How do the inputs to our search-based approach
impact the redesign of features? Here we discuss how the
inputs used by our search-based approach impact the solutions
generated in Step C (see Section IV-C).

RQ4. Which customization and reuse opportunities were
identified for the microservice candidates? In this question
we evaluate whether the developers identify customization
and reuse opportunities for microservices of the redesign
candidates. Reuse is a benefit expected from the adoption
microservices. Customization is required to meet user needs.

B. Data Extraction for the Legacy System Representation

We developed an extractor to collect data and construct the
graph of the legacy system in our case study. We describe
below how the extractor works. However, for other legacy
systems implemented in different programming language, the
data can be extracted differently. In our study, the input was the
source code, the list of features to redesign with corresponding
entry points to their source code, and the functional test cases
related to these features. These pieces of information were
provided by an expert in the legacy system.

Feature label in the vertices: To map the features to their
source code, we adopted an automatic strategy based on
execution traces. This strategy executes functional test cases,
to label the vertices with the names of the features they
implement. This strategy uses code elements as entry points
to associate features with execution traces. Each entry point
defines one of the possible entries to the feature boundaries.
The boundaries consist of a set of methods that directly interact
with methods of other features, i.e., delimit the feature scope.

Basically, an entry point is a relationship between a regular
expression and a feature. Each regular expression is compared
with patterns in the names of packages, classes, or methods
in the execution trace. The regular expression can provide a
match with methods of the execution trace by some name
patterns. In the match, the method in the execution trace is
labeled in graph vertex with the related feature. Each method
in the execution trace that is not an entry point is labeled with
the feature of the last entry point (lower depth number).

For example, Listing 1 presents a simplified trace execution
whereas Listing 2 shows entry points to Algorithm and Project.
In the analysis, the method Algorithm.getAdminIds is
matched with the regular expression associated with the feature
Algorithm, then the method is an entry point and labeled with
this feature. The next methods with higher depth are also
labeled with the feature Algorithm up to the point the method
ProjectService.getAllProjects is reached. This
method matches with the regular expression of the feature
Project. Thus, ProjectService.getAllProjects
is labeled with the feature Project as well as
ProjectInfoService.getInfo as it has a higher depth.
Finally, the method Algorithm.algorithmsToVector
is labeled with the feature Algorithm because of the lower
depth as an entry point is Algorithm and not Project.

Listing 1. Execution trace example
Name:Algorithm.getAdminIds#Depth:12
Name:Algorithm.getAllAlgorithms#Depth:13
Name:Algorithm.loadLocalAlgorithmCache#Depth:14
Name:Algorithm.getPermission#Depth:13
Name:AlgorithmPermission.getAllPermissionIds#Depth:14
Name:AlgorithmPermission.getPermissionIds#Depth:15
Name:ProjectService.getAllProjects#Depth:16
Name:ProjectInfoService.getInfo#Depth:17
Name:Algorithm.algorithmsToVector#Depth:14

Listing 2. Entry points of the features Algorithm and Project
Algorithm<Algorithms.getAdminIds>
Project<ProjectService.*>

Relationship information in the edges: In addition to la-
beled vertices, edges also contain information required by
the optimization performed by the genetic algorithm. Static
calls between methods were extracted from the system under
analysis by the tool depfinder [35]. Regarding the dynamic
information, we created an extractor that injects code in each
method of the program under analysis before its compilation.
The injected code is responsible to count how many times
has a method been called during the execution. Moreover,
the injected code also computes the size of the parameters’
data provided to each method associated with each call. This
computation considers the sum of all primitive types in each
parameter, e.g., the primitive types stored in an object passed
as parameter. In summary, the size of each primitive type is
summed based on the size provided by the virtual machine.

C. Experiment Configuration

To evaluate the proposed strategy, we relied on a legacy
system of Tecgraf Institute as input for Step A. The list
of features was: Authentication, Algorithm, and Project (see
Section III). An author of this paper is the project manager of
the legacy system, which made its source code and test cases
available for the evaluation. Another author is an expert on
the case study and provided the entry points for each feature.

For Step B, we adopt the evaluation model with four
criteria (see Section IV-B). For Step C, we configured three
different experiments to further investigate how the features
were redesigned in the generated solutions, as follows:

• Exp–5MS: number of desired microservices = 5, number
of methods for each microservice between 6% and 32%.

• Exp–7MS: number of desired microservices = 7, number
of methods for each microservice between 4% and 24%.

• Exp–10MS: number of desired microservices = 10, num-
ber of methods by microservice between 3% and 16%.

To have significant information for Step D, we executed 30
independent runs of each experiment. After the computation
of all solutions, we considered the indicator ED to select one
redesign architecture candidate for each experiment, which
was the basis for the qualitative evaluation presented next.

D. Qualitative Evaluation with Developers

In the qualitative study we interviewed eight developers
of the legacy system and inquired their opinion about some
generated solutions. During the interview, each developer
assessed the microservices of each solution regarding their
main features. They are mostly experienced developers, with a
median time experience in software development of 12.5 years.
Regarding their experience with the legacy system, we have
both experienced developers, with experience of 8, 13 and 20
years, and recent developers, with experience between 0.5 and
3 years. Seven participants are developers of the legacy system
and one is a team leader. All data collected were analyzed by
three of the authors. Details are available in [36].

VI. RESULTS

The part of the legacy system given as input for the redesign
strategy has a total of 180 classes, where 76 of them (42%)
have pieces of code that realize more than one feature. Yet, the
implementations of Algorithm, Project and Authentication are
diffused in 100, 85 and 65 classes, respectively. These numbers
reinforce how difficult is a manual identification of microser-
vices taking into account the four criteria (Section IV-B).

The generated solutions have different compromises among
the four criteria. Figure 4 presents the fitness of each so-
lution for the set of non-dominated solutions obtained by
Exp–10MS considering the 30 independent runs. In this figure,
we can observe that coupling and cohesion are conflicting
measures (yellow and black lines). These two measures seem
to increase/decrease inversely proportional. On the other hand,
coupling resembles network overhead in half of the cases. This
is an expected result: when there is more coupling, more is
the communication among microservices, and vice-versa. But
we can also observe that this relation is not proportional. It
seems that depending on the solution, it can have very low
coupling and still lead to high overhead (red lines).

An interesting observation is that structural cohesion is not
strictly related to feature modularization. Some studies on
migrating legacy systems to microservices mention that struc-
tural cohesion is a guiding criterion for this process [6, 10].
However, we can observe that cohesion in classes code does
not lead to cohesion in features, i.e., feature modularization.
As far as exclusive adherence to the criterion of cohesion is
concerned, we might violate the principle of single responsibil-
ity. This means that we may have cohesive microservices, but

Coupling Cohesion Network
Overhead

Feature
Modularization

 10200

 10400

 10600

 10800

 11000

 11200

11400

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 4x108

 6x108

 8x108

 1x109

 1.2x109

 1.4x109

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

Fig. 4. Non-dominated solutions for experiment Exp–10MS

that leads to tangled features, which would further harm the
migration and future maintenance and evolution. In addition,
tangled features makes DevOps adoption complex, one of the
most appealing benefits of migrating to microservices [37].

To qualitatively analyze the redesign candidates found by
each experiment, we picked up the solution with the lowest
ED. They represent the solutions that have the best trade-off
among the objectives, following the recommendation of Step D
(see Section IV-D). Figures 5(a), 5(b) and 5(c) depict the
graphs that represent these solutions. We analyzed the methods
that constitute each microservice candidate and assigned a
name for it. The name is associated with the predominant
feature (or subfeature) realized by the microservice. These
names were validated by the developers.

The features are modularized in different ways in each
solution. The solution of Exp–5MS (Figure 5(a)) has coarse-
grained microservices as the feature Algorithm was modular-
ized in two microservices: Algorithm Analyzer and Algorithm
Metadata. The same applies to the feature Project, resulting
in Project Files Manager and Project Metadata. The last
microservice realizes the feature Authentication. On the other
hand, solutions of Exp–7MS and Exp–10MS have fine-grained
microservices. Taking into account the solution of Exp–7MS,
the feature Algorithm was modularized in Algorithm Analyzer,
Algorithm Flow Builder, and Algorithm Version and Cate-
gory. In this solution, there are three microservices to deal
with Project, namely Project Metadata, Project Credentials,
and Project Files Manager. The latter is a microservice for
Authentication. In comparison with the solution of Exp–
7MS, the solution of Exp–10MS has one more microservice
for Algorithm (Algorithm Parameter Validator), an additional
microservice of Authentication (User), and an exclusive mi-
croservice for logging (Server Log) that in the other redesign
candidates was scattered in other microservices. We observe
that the microservices related to Algorithm and Project of
Exp–5MS and Exp–10MS are more related to each other
than in Exp–7MS. The former solutions have lower coupling
between microservices that realize different features.

A. RQ1. Microservices Aligned with Business Capabilities

We asked eight developers to check whether they recognize
the microservices that represent business capabilities. To this
end, they inspected the source code of the microservices of the
redesign candidates. Interestingly, regardless of the developers’
experience in the legacy system, all participants could identify

Algorithm Analyzer
(227 methods)

Project Files Manager
(256 methods)

Algorithm Metadata
(160 methods)

Project Metadata
(190 methods)

Authentication
(204 methods)

(a) Solution of Exp–5MS

Algorithm Analyzer
(185 methods)

Algorithm Version and Category
(36 methods)

Algorithm Flow Builder
(164 methods)

Authentication
(99 methods)

Project Metadata
(94 methods)

Project Credentials
(240 methods)

Project Files Manager
(220 methods)

(b) Solution of Exp–7MS

Project Credentials
(89 methods)

Project Metadata
(108 methods)

Project Files Manager
(249 methods)

Server Log
(75 methods)

User
(62 methods)

Authentication
(59 methods)

Algorithm Analyzer
(132 methods)

Algorithm Flow Builder
(91 methods)

Algorithm Parameter Validator
(104 methods)

Algorithm Version and Category
(62 methods)

(c) Solution of Exp–10MS

Fig. 5. Selected solutions for each experiment. The edge values for syntactic
calls, dynamic calls, and data traffic were omitted to improve readability.

the predominant features. For the sake of illustration, one
participant (P6) argued: “It is a microservice of Algorithm
that writes both the algorithm and its corresponding files.”

Another participant (P7) observed that “one microservice
is highly-cohesive in the Project logic despite addressing two
functionalities of Project: Project File Manager and Project
Metadata”. This statement also showed that the participants
recognized new features (including subfeatures), which were
not previously informed as known by them. Another statement,
by participant P4, clearly addresses this fact: “It is possible to
identify that this microservice focuses on Algorithm. However,
there are several methods associated with Project Credentials.
This microservice could be smaller, extracting the logic related
to the Project Credentials subfeature and delegating it to
another microservice.” As expected, the participants with more
experience in the legacy system (P4, P5, P6, P8) recognized
more new features in general than recent developers. Some
subfeatures identified by the participants include: Project Cre-
dentials, Project Metadata, Project Files Manager, Algorithm
Flow Builder, and Algorithm Parameter Validator.

Taking into account the solutions presented in Figure 5,
we could notice that Exp–7MS and Exp–10MS have mi-
croservices realizing some new subfeatures identified by the
developers. The activity of evaluating the generated solutions
allows the participant to reason about the features and their
subfeatures; and they agreed with the predominant feature
modularized in each microservice. This means that our auto-
matic strategy based on execution traces is properly mapping
the features to their respective legacy methods. The only
exception is related to the microservices whose granularity is
different from the developer’s preference (see Section VI-B).

RQ1: The features and subfeatures modularized in the
microservice architecture solutions are aligned with busi-
ness capabilities as they are related to (i) the features
informed as input to the strategy, and (ii) the subfeatures
recognized by developers during the evaluation.

B. RQ2. Criteria Relevance for the Microservice Identification

We also analyzed which criteria the developers have con-
sidered during the evaluation of the solutions obtained by our
strategy. Most developers have considered all four criteria.
Feature modularization, coupling and cohesion were men-
tioned by all the developers. Network overhead was considered
by three developers. For instance, when asked to identify the
feature realized by a specific microservice, P8 stated “This
microservice is related to Project. It is highly-cohesive and
has low communication overhead.” Other participant (P7)
also mentioned cohesion and overhead: “This microservice is
cohesive regarding Algorithm; however, it includes Algorithm
Flow Builder that makes this microservice large and affects
the communication overhead.” Interestingly, this corroborates
the results of an existing survey that suggests that at least
four criteria are often considered simultaneously as useful to
support the identification of microservices [10].

In addition to the criteria investigated in previous studies,
other criteria were considered by the developers, albeit much
less frequently. They are related to team size and developer
knowledge, or quality requirements, such as performance,
security, maintainability and interface complexity. Team size
and business were considered by two developers whereas the
other ones were considered once.

RQ2: The set of criteria adopted in our strategy are often
considered as relevant and useful by the developers of the
legacy system.

C. RQ3. Impact of the criteria on the Redesign of Features

This RQ addresses the impact of the criteria used during the
evolutionary process, i.e., the Step C of the proposed strategy.
Therefore, we analyze the fitness value of each selected
solution (see Table I). The values of coupling and cohesion
indicate conflict between them as one can notice in the solution
of Exp–5MS. This solution is highly cohesive and loosely
coupled, whereas the solution of Exp–10MS has low cohesion
and high coupling. These values are due to the different
levels of microservice granularity as previously discussed. The
solution of Exp–5MS might be the ideal solution in terms
of coupling and cohesion. However, given its coarse-grained
microservices, the value of network overhead is extremely high
when compared to other solutions.

Another dimension of the evaluation model is the degree
of feature modularization into microservices. The solution of
Exp–10MS has the lowest value of feature modularization as
well as the lowest values of cohesion. In this solution, 60%
of the microservice candidates realize at most two features.
Also, 12% of the methods have pieces of code realizing more
than one feature, recalling that a method can be mapped to
more than one feature. The solution of Exp–7MS has 24% of
methods realizing more than one feature and six microservice
candidates deal with three features. The solution of Exp–5MS
has only 9% of its methods realizing more than one feature.
For instance, the microservice candidates associated with
Algorithm also deal with another feature. The microservice
candidates associated with Project also have methods realizing
Algorithm and Authentication. These details impact on the
value of the fitness function Feature Modularization.

An interesting observation is the optimal modularization of
the microservice entitled Algorithm Flow Builder, which deals
only with this subfeature. The counterpart of this microservice
in the solution of Exp–7MS deals with 3 features and around
24% of its methods realize more than one feature. We also
noticed that Authentication, which is a naturally crosscutting

TABLE I
FITNESS OF THE SELECTED REDESIGN CANDIDATES

Solution Coupling Cohesion Network Feature
Overhead Modularization

Exp–5MS 5789.0 5.85 8.53 0.27
Exp–7MS 8397.0 5.34 1.25 0.24

Exp–10MS 8730.0 1.82 1.46 0.15

feature, is a highly-coupled microservice (Figure 5(b)). De-
spite the difficulty of modularizing crosscutting features, our
strategy found alternatives to redesign the feature Authentica-
tion. We observed that the microservices whose predominant
feature is Authentication have the greatest values of feature
tangling: 55% of the methods realize more than one feature.

Another point of view that impacts the redesign of features
is the granularity level of microservices, which is defined by
the number of desired microservices given as input to our
strategy. Considering the three selected solutions, one can
argue that the solution of Exp–10MS is the best, as it has
the lowest values for cohesion and feature modularization
(Table I). However, the comprehension of what is a small
microservice varies according to the developer or organiza-
tion preferences, as we could observe when interviewing the
developers of our case study. The redesign candidates obtained
by the different experiments pointed out that our strategy is
flexible. They can be easily adapted to fit a desired granularity
level of preference. The developer only needs to inform the
number of microservices to be extracted from the legacy
code. Then, the features will be incorporated in the redesign
candidates accordingly, i.e., in a coarse or fine granularity.

The divergent preferences regarding the granularity of mi-
croservices can be illustrated by quotes of some participants.
One developer (P8), who clearly prefer fine-grained microser-
vices, argued about the microservice Authentication of Exp–
5MS: “The cohesion of this microservice is very low. It has
methods to realize distinct functionalities: Algorithm, Project
and User. It performs a lot of non-related operations”. On the
other hand, participant P6 recognized that the predominant
feature of a microservice is Project Files Manager but stated
“I would add elements of Project Credentials to make the
microservice more autonomous and reduce the communication
overhead”. For other participants some microservice candi-
dates have the expected granularity: “This microservice has
methods related to the same objective what allows greater
reuse. It is possible to identify that the main functionality is
the management of project files” (P4).

Another important point to be considered is that the method
names might not represent their behavior. One developer (P1)
argued: “It is complicated to trust that the method does what
its name indicates. In legacy code, as ours, certain identifiers
were defined 20 years ago and they were never renamed even
after several modifications”. This fact strengthens that solely
static techniques for feature location (avoided in our strategy)
indeed suffer due to the bad quality of the method names in
the legacy code as well as endorse our option for a feature-
to-code mapping combining dynamic and static analyses.

RQ3: The obtained redesign candidates composed by
microservices with different granularity levels show that
our strategy is flexible and able to generate solutions
according to the developers’ needs and preferences. The
results evidence that the solutions generated by our strat-
egy allow restructuring features to be smoothly migrated
to a microservice architecture.

D. RQ4. Customization and Reuse Opportunities

Customization opportunities were revealed during the eval-
uation, as shown by the team leader: “one possible cus-
tomization for this microservice is to allow using centralized
or decentralized files for each project”. Other opportunities
mentioned by developers involve the microservices Algorithm
Flow Builder and Project Metadata. The developers pointed
different types of customization: (i) customizing the interface
of a microservice, (ii) changing a microservice by specializa-
tion, and (iii) completely disabling a microservice.

Regarding the solution of Exp–5MS, four microservices
contain variability. Algorithm Analyzer and Project Meta-
data may be customized at the interface level. Project Files
Manager can be specialized according to the product to be
generated, and Project Metadata can be completely disabled.
Algorithm Analyzer is affected by variability on its interface
since the subfeature responsible for enabling the builder of
algorithm flows, e.g., build a scientific workflow, can be
disabled in some products. Thus, endpoints responsible to
build an algorithm flow can be disabled to these products.
Project Files Manager is completely responsible for enabling
the feature of a project file.

However, products can implement the file management in
different ways. For example, a client deriving a product can
implement a distributed file system, use a file system of a
cloud service, or a simple and centralized file system (default
option). Hence, the microservice can be specialized by each
product. Project Metadata contains information about the
users of each project. In this order, different information can be
stored and provided in the interface of this microservice. Thus,
this microservice presents variability in its REST interface,
allowing endpoints be customized or the metadata in the
interface response contain variability. In addition, the complete
concept of the project (a shared environment to researchers)
in a product might be completely disabled.

Three microservices can be customized in the solutions
of Exp–7MS and Exp–10MS. The subfeature responsible
for building an algorithm flow was modularized in the mi-
croservice Algorithm Flow Builder. This microservice can
be completely disabled in products that do not need this
subfeature. The microservices Project Files Manager and
Project Metadata contain the same type of customization of
the solution generated by Exp–5MS. In summary, the observed
variabilities lead to microservice customization that impacts
the microservice interfaces, the microservice specialization or
even the microservice existence.

Developers of the legacy maintain several software products
for the domain of the oil and gas industry (see Section III).
According to these developers, there is potential for reusing
the User, Authentication, Server Log, Project Files Manager
and Project Credentials microservices across the existing soft-
ware products. One participant argued: “The microservice that
realizes management of project files (Project Files Manager)
is highly reusable by different tenants”.

RQ4: We observed three types of customization that
can be explored in redesigned microservices: interface
customization, microservice specialization, and disabling
a microservice. Yet, developers identified opportunities of
customization and envisioned reuse opportunities of four
microservices from the solutions obtained by our strategy.

VII. THREATS TO VALIDITY

An internal threat to the validity of this study can be
related to execution traces bias, since all execution traces are
generated using given test cases. To mitigate this threat, an
expert in the target system conducted all the feature mapping
activities. We believe that the test cases cover the features of
interest. Another threat is related to the evolutionary algorithm
chosen. We used the state-of-the-art many-objective evolution-
ary algorithm based on NSGA III [29] that has shown high
accuracy to solve many-objective problems.

Regarding external validity, the first threat is related to the
case study and the discussion of the results. Despite using only
one system, it is a real-world legacy system with more than
15 years of existence. We believe we could provide robust
and reliable results that can be useful in practice. The second
threat is the effect of the participants’ background on the
results that might lead to different opinions about the solutions.
We tried to minimize this threat by involving experienced
developers who were knowledgeable with the legacy system
and microservice architecture. Another threat is the lack of
a meaningful comparison baseline. We mitigated this threat
in our previous study [38], where NSGA-III applied in our
strategy outperformed a baseline approach.

VIII. CONCLUDING REMARKS

In this paper, we introduce a strategy to redesign features
as microservices. The strategy uses search-based software
engineering techniques to quantitatively assess redesign can-
didates of legacy features as microservices in terms of four
criteria: coupling, cohesion, network overhead, and feature
modularization. An industrial case study has shown that the
proposed strategy achieves promising results and calls for
further investigation of its use on other legacy systems.

The main findings of our case study include discovering
that (i) the features were modularized as microservices aligned
with the business capabilities of the legacy system; (ii) the
developers of the legacy system consider mainly the criteria
included in our strategy; and (iii) reuse and customization
opportunities arouse from the redesign of features as microser-
vices. In this sense, a future direction is to propose an explicit
criterion related to variability to support configurability.

ACKNOWLEDGMENT

This work was funded by CNPq (grants 434969/2018-4,
408356/2018-9, 428994/2018-0, 312149/2016-6), FAPERJ
(grants 200773/2019, 010002285/2019, PDR-10 Fellowship
202073/2020), CAPES/Procad (grant 175956), CAPES/Proex
and FAPPR (grants 51435, 51152). The authors thank Tecgraf
Institute of PUC-Rio for its support in the industrial case study.

REFERENCES

[1] S. Fowler, Production-Ready Microservices. O’Reilly Media, 2016.
[2] C. Watson, S. Emmons, and B. Gregg. (2015) A microscope on

microservices. [Online]. Available: http://techblog.netflix.com/2015/02/
a-microscope-on-microservices.html

[3] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo, G. Pinto, and
R. Bonifácio, “An experience report on the adoption of microservices in
three brazilian government institutions,” in XXXII Brazilian Symposium
on Software Engineering. ACM, 2018, pp. 32–41.

[4] L. P. Tizzei, M. Nery, V. C. V. B. Segura, and R. F. G. Cerqueira, “Using
microservices and software product line engineering to support reuse of
evolving multi-tenant saas,” in 21st International Systems and Software
Product Line Conference (SPLC). ACM, 2017, pp. 205–214.

[5] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara,
“From monolithic to microservices: An experience report from the
banking domain,” IEEE Software, vol. 35, no. 3, pp. 50–55, 2018.

[6] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[7] J. Lewis and M. Fowler. (2014) Microservices. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU/SEI-90-TR-021, 1990. [Online]. Available: http:
//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

[9] A. Henry and Y. Ridene, Migrating to Microservices. Cham: Springer
International Publishing, 2020, pp. 45–72.

[10] L. Carvalho, A. Garcia, W. K. G. Assunção, R. de Mello, and M. J.
de Lima, “Analysis of the criteria adopted in industry to extract mi-
croservices,” in Proceedings of the Joint 7th International Workshop
on Conducting Empirical Studies in Industry and 6th International
Workshop on Software Engineering Research and Industrial Practice,
ser. CESSER-IP ’19. IEEE Press, 2019, pp. 22–29.

[11] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from
monolithic software architectures,” in International Conference on Web
Services (ICWS). IEEE, 2017, pp. 524–531.

[12] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K. Garcés, C. Parra,
and R. Casallas, “Towards the understanding and evolution of monolithic
applications as microservices,” in XLII Latin American Computing
Conference (CLEI). IEEE, 2016, pp. 1–11.

[13] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[14] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, “Functionality-oriented
microservice extraction based on execution trace clustering,” in Interna-
tional Conference on Web Services (ICWS). IEEE, 2018, pp. 211–218.

[15] A. Isazadeh, H. Izadkhah, and I. Elgedawy, Source code modularization:
theory and techniques. Springer, 2017.

[16] F. Brito e Abreu and M. Goulao, “Coupling and cohesion as modu-
larization drivers: are we being over-persuaded?” in Proceedings Fifth
European Conference on Software Maintenance and Reengineering,
2001, pp. 47–57.

[17] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion and
coupling for software remodularization: Is it enough?” ACM Trans.s on
Software Engineering and Methodology, vol. 25, no. 3, Jun. 2016.

[18] J. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons
learned on an industrial migration to a web oriented architecture,” in
International Conference on Software Architecture Workshops (ICSAW).
IEEE, 2017, pp. 62–65.

[19] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[20] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a mi-
croservices architecture: An approach based on transactional contexts,”
in Software Architecture, T. Bures, L. Duchien, and P. Inverardi, Eds.
Cham: Springer International Publishing, 2019, pp. 37–52.

[21] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and
Z. Shan, “A dataflow-driven approach to identifying microservices from
monolithic applications,” Journal of Systems and Software, vol. 157, p.
110380, 2019.

[22] I. Pigazzini, F. Arcelli Fontana, and A. Maggioni, “Tool support for
the migration to microservice architecture: An industrial case study,”

in Software Architecture, T. Bures, L. Duchien, and P. Inverardi, Eds.
Cham: Springer International Publishing, 2019, pp. 247–263.

[23] A. Megargel, V. Shankararaman, and D. K. Walker, Migrating from
Monoliths to Cloud-Based Microservices: A Banking Industry Example.
Cham: Springer International Publishing, 2020, pp. 85–108. [Online].
Available: https://doi.org/10.1007/978-3-030-33624-0_4

[24] S. A. Maisto, B. Di Martino, and S. Nacchia, “From monolith to
cloud architecture using semi-automated microservices modernization,”
in Advances on P2P, Parallel, Grid, Cloud and Internet Computing,
L. Barolli, P. Hellinckx, and J. Natwichai, Eds. Cham: Springer
International Publishing, 2020, pp. 638–647.

[25] H. H. da Silva, G. F. d. Carneiro, and M. P. Monteiro, “Towards a
roadmap for the migration of legacy software systems to a microservice
based architecture,” in 9th International Conference on Cloud Comput-
ing and Services Science (CLOSER 2019). SciTePress, 2019, pp. 37–47.

[26] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: a systematic mapping study,” in 8th International Confer-
ence on Cloud Computing and Services Science. SciTePress, 2018.

[27] L. Carvalho, A. Garcia, W. K. G. Assunção, R. Bonifácio, L. P. Tizzei,
and T. E. Colanzi, “Extraction of configurable and reusable microser-
vices from legacy systems: An exploratory study,” in 23rd International
Systems and Software Product Line Conference, ser. SPLC’19. ACM,
2019, pp. 26–31.

[28] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, M. J. Lima,
B. Fonseca, M. Ribeiro, and C. Lucena, “Search-based many-criteria
identification of microservices from legacy systems,” in 22th Genetic
and Evolutionary Computation Conference Companion, ser. GECCO
’20. ACM, 2020, pp. 305–306.

[29] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part i: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[30] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

[31] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the
design level,” in 9th Annual Conference on Genetic and Evolutionary
Computation. New York, NY, USA: ACM, 2007, pp. 1106–1113.

[32] D. Goldberg, K. Deb, and J. Clark, “Genetic algorithms, noise, and the
sizing of populations,” Complex Systems, vol. 6, pp. 333–362, 1992.

[33] M. Fowler, Refactoring: Improving the Design of Existing Code. USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[34] J. Cochrane and M. Zeleny, Multiple Criteria Decision Making. Uni-
versity of South Carolina Press, Columbia, 1973.

[35] G. Vlahavas, “depfinder: a tool that finds dependencies of slackware
packages,” http://depfinder.sourceforge.net/, accessed: 2020-10-14.

[36] W. K. G. Assunção, T. E. Colanzi, L. Carvalho, J. A. Pereira, A. Garcia,
M. J. de Lima, and C. Lucena, “Supplementary material,” https://wesl
eyklewerton.github.io/publications/SANER2021_complementary_mater
ial.pdf, accessed: 2021-01-05.

[37] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables devops: Migration to a cloud-native architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, 2016.

[38] L. Carvalho, A. Garcia, T. E. Colanzi, W. K. G. Assunção, J. A. Pereira,
B. Fonseca, M. Ribeiro, M. J. Lima, and C. Lucena, “On the perfor-
mance and adoption of search-based microservice identification with
tomicroservices,” in 36th IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2020, pp. 569–580.

http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
https://martinfowler.com/articles/microservices.html
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://doi.org/10.1007/978-3-030-33624-0_4
http://depfinder.sourceforge.net/
https://wesleyklewerton.github.io/publications/SANER2021_complementary_material.pdf
https://wesleyklewerton.github.io/publications/SANER2021_complementary_material.pdf
https://wesleyklewerton.github.io/publications/SANER2021_complementary_material.pdf

	Introduction
	Related Work
	Case Study
	Proposed Redesign Strategy
	Representation of the Legacy System
	Definition of Criteria for Microservice Identification
	Automatic Identification of Microservice Boundaries
	Selection of a Redesigned Architecture Candidate

	Evaluation Setup
	Research Questions
	Data Extraction for the Legacy System Representation
	Experiment Configuration
	Qualitative Evaluation with Developers

	Results
	RQ1. Microservices Aligned with Business Capabilities
	RQ2. Criteria Relevance for the Microservice Identification
	RQ3. Impact of the criteria on the Redesign of Features
	RQ4. Customization and Reuse Opportunities

	Threats to Validity
	Concluding Remarks
	References

