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Abstract The expensive maintenance of legacy systems leads companies to
migrate such systems to modern architectures. Microservice architectural style
has become a trend to modernize monolithic legacy systems. A microservice
architecture consists of small, autonomous, and highly-independent services
communicating by using lightweight network protocols. To support the design-
ing of microservice architectures, recent studies have proposed either single or
multi-objective approaches. In order to improve the effectiveness of existing
approaches, we introduced toMicroservices that is a many-objective search-
based approach to aid the identification of boundaries among services. In pre-
vious studies, we have focused on a qualitative evaluation of the applicability
and adoption of the proposed approach from a practical point of view, thus the
optimization process itself has not been investigated in depth. In this paper, we
extend our previous work by performing a more in-depth analysis of our many-
objective approach for microservice identification. We compare our approach
against a baseline approach based on a random search using a set of perfor-
mance indicators widely used in the literature of many-objective optimization.
Our results are validated through a real-world case study. The study findings
reveal that (i) the criteria optimized by our approach are interdependent and
conflicting; and (ii) all candidate solutions lead to better performance indica-
tors in comparison to random search. Overall, the proposed many-objective
approach for microservice identification yields promising results, which shed
light on insights for further improvements.
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1 Introduction

Microservices are small and autonomous services that work together by us-
ing lightweight network protocols [49]. Fundamentally, microservices are dis-
tributed systems built as a collection of intercommunicating fine-granularity
services with independent computational resources. Microservices architec-
tural style has become a trend to develop highly scalable and available software
systems [22]. A crucial step for a well-designed microservice architecture is the
identification of proper microservice boundaries, which allow the adequate
implementation of microservices. Some authors discuss that this identification
should take into account the coupling and cohesion of the microservices [21,49].
In addition, other authors recommend the conception of microservices based
on business capabilities [21]. That is, intrinsically related to the main features
in each microservice. Thus, several criteria should be used to adequately iden-
tify microservices, where a criterion defines rules or properties on how to deal
with existing information to support the decision-making process of defining
microservices boundaries.

Recent studies show that practitioners have to simultaneously consider five
typical criteria – cohesion, coupling, feature modularization, reuse and network
overhead [9,10,11] – along the decision-making process. However, most of the
state-of-the-art approaches are single or multi-objective, commonly optimizing
only coupling and cohesion, without their validation in industrial systems [24,
25, 38, 39, 45, 62] (further described in Section 2). To fulfill this existing gap
in practice, in a recent study we defined toMicroservices, a many-objective
optimization approach considering the five criteria mentioned above [11, 12]
(Section 3). In previous studies [3, 11], we performed an initial evaluation of
the performance of toMicroservices and focused on the practical adoption
of the microservices by maintainers of a legacy system. Those results pointed
out that our many-objective approach is more promising than the single and
multi-objective ones. However, the optimization process of our many-objective
approach has not been investigated in depth. In addition, to the best of our
knowledge, the relationship among the criteria adopted as objective functions
has not been investigated yet, such as the interdependence among network
overhead, feature modularization and reuse.

In this sense, the objective of this paper is to investigate the complexity of
the microservice identification problem when optimizing five objectives. As an
extension of our previous work in which we defined toMicroservices [11,12],
in this paper, we report a detailed study (Section 4) with an in-depth analysis
(Section 5) of the optimization process of our many-objective approach for mi-
croservice identification. We compare toMicroservices, based on NSGA-III
with five objectives, against a random search (RS) using six performance in-
dicators widely used in the literature, differently from our previous study that
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used only two performance indicators. Also, we extended our analysis with
correlation analysis to investigate the interdependent and conflicting nature
of the five criteria used as objective functions. The approach was validated in
a real-world case study to answer the following research questions:

– RQ1. To what extent are the five objective functions interdependent and
conflicting in an industrial system?

– RQ2. How do NSGA-III and RS compare in terms of performance indica-
tors when optimizing five criteria?

To answer RQ1, we investigate the correlation between pairs of objective
functions related to the criteria of microservice identification. By analyzing this
correlation, we can understand how difficult the problem we are dealing with
is. The correlation serves as an indicator of the complexity of the microservice
identification problem justifying or not the use of a many-objective optimiza-
tion approach. To address RQ2, we investigate the behavior of NSGA-III in
comparison to a RS for solving the many-objective optimization problem of mi-
croservice identification. A search algorithm can always be compared against
at least a random search to check that its success is not due to the simplicity of
solving the posed problem [2]. In such evaluations we analyzed: (i) the results
according to six performance indicators and three statistical tests widely used
in the SBSE field [16, 17], and (ii) how the criteria are optimized by search
algorithms.

The main contribution of our work is a detailed analysis on the complex-
ity of the microservice identification problem when optimizing five objectives.
Such an analysis was done in the context of the many-objective treatment
for the microservice identification problem given by toMicroservices, as the
related work [24,25,38,39,45,62] do not deal with more than 3 objectives. Our
main findings indicate that (i) the referred problem deserves to be considered
as a many-objective optimization problem since all criteria are important to
the problem, (ii) the five criteria optimized during the microservice identifica-
tion are in conflict and some of them are interdependent, and (iii) NSGA-III
properly deals with the problem. This implies that further studies can deal
with microservice identification as a many-objective problem without requir-
ing this kind of investigation.

2 Background

This section presents a background of microservice architectures, migration
from legacy systems, the activity of identifying microservices in the code, basic
concepts on many-objective optimization, and an illustrative example of the
identification of microservices from legacy systems.

Microservice architectures. Microservices are small and autonomous
services that work together [49], where a service is a unit of software that is
independently replaceable and upgradeable [21,22]. The “small” aspect refers
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to the fact that a microservice should have fine granularity and address a sin-
gle responsibility [21,22]. A microservice is also expected to be “autonomous”:
(i) it should consist of a service highly independent from others, and (ii) it
should enable independent use of technologies. A microservice is not an en-
tirely isolated architectural element. A microservice architecture usually relies
on lightweight protocols. Each protocol provides reliable communication with-
out responsibility for processing business rules [21]. For example, a common
lightweight synchronous protocol communication is HTTP. The characteristics
aforementioned involving a microservice and their relationships define what is
a microservice architecture [49].

Migration to microservice architectures. There are several studies
reporting the migration to microservice architectures, as reported in a mapping
study [21]. The migration is usually motivated by many limitations, including
difficult maintainability and inadequate resource usage in a cloud environment.
One of the most challenging activities of the migration is the identification of
microservices by defining their boundaries based on the legacy code [28, 42].
The manual identification of microservices in legacy code is a time-consuming,
risky activity. Several manual and (semi-)automated approaches have been
proposed to identify microservices.

Microservice identification in legacy code. The problem of microser-
vice identification in legacy code is commonly seen as a software remodular-
ization task [1], which is known to be an NP-hard problem. There is a huge
number of possible combinations of source-code elements and its multi-criteria
nature [46]. In addition to the huge combinations of source-code elements,
there are also the desired properties to be achieved or criteria/constraints
that should be taken into account when performing the remodularization [5].
Existing approaches adopt different criteria to identify microservices. Cou-
pling is the most adopted criterion [24,25,38,39,45,62]. Similarly to coupling,
cohesion is also commonly used by automated approaches to promote better
modularization [38,62]. Besides, some features can be used to derive execution
cases of the legacy system [38, 39] to measure dynamic coupling or cohesion.
However, there is no approach that uses features’ information in objective
functions. The same applies to reuse and communication overhead, which are
also basic criteria for microservice identification in practice [9, 10]. Based on
existing limitations, we defined an automated approach that uses five criteria
as objective functions to provide an approach that suits better practitioners’
expectations [11,12]. In addition, our approach operates at the granularity of
methods rather than only classes; in fact, features may be tangled and scat-
tered in classes. This is one contribution of our work since existing approaches
only operate at the class level, which leads to a coarse-grained analysis unde-
sirable outputs. For instance, let us consider a possible threat in restricting
to classes: legacy systems often consist of very large classes, which incorpo-
rates too many features. The result is that each class is artificially tagged with
a single functionality, possibly the one with more class elements realizing it.
Even worse, the other feature realized by the same class (but ignored by the
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tagging strategy) is likely to be mislocated in the resulting decomposition of
the microservices.

Multi- and Many-Objective Optimization. Multi-objective optimiza-
tion is an area of multiple criteria decision making that is concerned with
mathematical optimization problems involving two or three objective func-
tions to be optimized simultaneously [15]. In general, there is more than
one solution for this kind of problems. Thus, several good solutions repre-
sent the trade-off between the defined objectives. Many-objective optimization
refers to a class of optimization problems that have more than three objec-
tives. Multi-objective evolutionary algorithms (MOEAs), such as the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) [20] and the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [63], have received immense recog-
nition due to their effectiveness and efficiency in tackling multi-objective opti-
mization problems. Recently, numerous studies on MOEAs revealed that when
handling many-objective optimization problems, MOEAs encounter challenges
and the behavior of MOEAs resembles a random walk in search space as the
proportion of non-dominated solutions increases subsequently [51]. The Non-
Dominated Sorting Genetic Algorithm III (NSGA-III) [19] was designed to
solve many-objective problems and has been successfully applied. In the SBSE
field, NSGA-III was also applied to solve Software Engineering many-objective
problems, such as software product line testing [37], software remodulariza-
tion [48] and software refactoring [47].

Example of Many-Objective Analysis. Next we illustrate the need
for simultaneously analyzing many criteria during microservice identification.
Figure 1(a) depicts a monolithic architecture of a legacy system (related to
our case study described in Section 4.1), which is the source of information for
the identification of microservices. The goal is to identify the boundaries to
extract the microservices that implement the features Algorithm and Project.
Figures 1(b), 1(c), and 1(d) illustrate alternative microservice architectures,
each one with two microservice candidates and the residual legacy system. Im-
plementation elements responsible for the feature Algorithm are highlighted
in blue whereas the elements are related to Project are in red. The numbers
in the dependencies represent calls between implementation elements in the
normal operation of the systems, which can be obtained with dynamic anal-
ysis. Several details were omitted in this figure to improve legibility, such as
attributes, methods, relationships, as this is only an illustrative example.

Alternative 1, presented in Figure 1(b), is an architecture candidate that
has one microservice with implementation exclusively of the feature Project.
This architecture also has another microservice with implementation elements
only related to Algorithm. In this architecture, the features Project and Al-
gorithm are well modularized regarding their implementation elements, which
might benefit a better visualization and source code organization. However, it
does not represent a proper architecture if we consider the traditional metrics
of coupling and cohesion, as we can observe dependencies between classes in
different microservices. Maintenance in one feature might require modifying
two microservices. The simplistic assumptions that features of the existing
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Fig. 1 Alternative Architectures for the Legacy System

legacy system usually have well-modularized features in files do not hold in
practice, as we further discuss in the results of our case study (Section 5). Fur-
thermore, Alternative 1 does not take into account that a method allocated
in the Project microservice candidate can massively call a method allocated
within the Algorithm, and vice-versa, leading to prohibitive network overhead.
In our illustrative example, we can observe that a dependency of 20 calls be-
tween the classes Project and Parameter become network communication.

The architecture candidate in Figure 1(c) allows an easier maintenance,
since it groups elements that are structurally dependents. Alternative 2 also
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avoids prohibitive network overhead as dependent elements are in only one mi-
croservice. We can say that this solution is good in accordance with coupling,
which is low. However, it reduces the cohesion of this architecture, as elements
that realize the feature Algorithm are in another microservice. Existing ap-
proaches for microservice identification usually are based on the traditional
metrics of coupling and cohesion to evaluate solutions. Consequently, we can
observe that features are not well-modularized, since the implementation of
Algorithm is scattered in two microservices, and more importantly, Algorithm
is tangled with Project in the second microservice.

To reach architecture candidate that presents better cohesion, still avoid-
ing the problem of massive calls between the two microservices, we can keep
in Project only the method that this microservice is highly dependent on. Al-
ternative 3, in Figure 1(d), presents an architecture in which one method of
the class Parameter was decoupled to be kept in the microservice responsible
for the feature it belongs to. The method createOutput(...) that is respon-
sible for implementing Algorithm was moved to the proper microservice. This
modification created a new dependency with 3 calls between microservices,
increasing the coupling, which not lead to prohibitive network overhead. How-
ever, it still does not have an optimal feature modularization.

The alternative architecture candidates illustrate that more than two crite-
ria are needed to achieve satisfactory microservice identification. In addition,
software engineers notably can have different needs or preferences in the sce-
nario they work on. For legacy systems, as the case study we deal with in this
study, approaches should consider several criteria and optimize them to obtain
a suitable microservice architecture. This also highlights the shortcoming of
existing approaches that make simplistic assumptions about real systems from
which microservices will be identified and extracted, e.g., features of the ex-
isting system usually has well-modularized features in files, not being tangled
and scattered through several methods of those files.

3 Many-Objective Identification of Microservices

In this work we use toMicroservices for the identification of microservices,
which was introduced in a recent work [11, 12]. toMicroservices is an auto-
mated approach to identify microservice candidates to aid developers in de-
signing microservice-based systems. Our approach relies on a many-objective
optimization with five objective functions related to criteria classified by de-
velopers as useful to identify microservices [10]. The criteria are coupling,
cohesion, feature modularization, network overhead, and reuse, which are de-
scribed in Section 3.2. This approach requires three pieces of information as
input: (i) an initial representation of the system to be implemented as microser-
vices, e.g. a class diagram or the source code of a legacy system; (ii) a list of
features with mapping to their implementation elements; and (iii) the number
of microservices to be identified. It is important to note that our approach
analyzes the input at the method level to achieve fine-grained microservices.
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The output generated is a set of candidate solutions, named Pareto front (PF),
where each solution is an alternative microservice architecture.

In the next subsections we describe details about toMicroservices, such
as representation, objective functions, genetic operators and previous findings.

3.1 Representation

The proposed approach uses a graph-based representation. Each vertex rep-
resents a method, which is assigned to its respective feature. The edges are
labeled with a triple e = (sc, dc, ds) in which sc contains information about
static calls, dc the dynamic calls, and ds represents the estimated size of data
used in the communication between methods. The optimization process is re-
sponsible for using these three pieces of information in the edges to group
vertices of the graph that will be the microservices.

Figure 2 depicts an example of input and a possible output based on the
case study described in Section 4.1. The input graph in Figure 2(a) has 11
methods/vertices from which there are seven calls among them. The features
assigned to each vertex is presented between “<” and “>”. For example,
the method Manager.addListener(...) implements part of the feature Al-
gorithm. The output in Figure 2(b) presents an example of a microservice
architecture, where the methods are grouped into three microservices, corre-
sponding to features Algorithm, Project, and Authentication. In this example
of output, we can see the dependencies between microservices, which will be-
come network communications. For example, three methods that belong to
Microservice Algorithm (blue in the figure) call two methods that belong
to Microservice Project (red in the figure).

3.2 Objective Functions

In this section we describe the criteria adopted as objective functions. The
criteria of coupling and cohesion were based on related work, but adapted in
our approach to a fine-grained, i.e., method level. The criteria of feature mod-
ularization and reuse have been also used in the context of traditional archi-
tectures, which inspired us on proposing and adapting their application to the
context of microservices. Network overhead is a criterion designed specifically
for microservice architecture. From now on, MSA (MicroServices Architec-
ture) refers to the graph of the microservice candidates (vertices) and their
communications (edges) generated by our approach, and MSC (MicroService
Candidate) refers to some vertices in the MSA. The criteria are defined next,
with illustrative examples of their computation using the output presented in
Figure 2(b).

1. Coupling: coupling for each microservice candidate MSc is computed by
the sum of the number of static calls from any method vi that belongs
to MSc to any methods vj that do not belong to MSc (see Equation 1),
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Fig. 2 Example of representation used by our approach

similarly to [13]. A static call consists of a syntactic call to another vj
method in the body of the vi method. The total coupling of a solution,
i.e., an individual, is the sum of the values of coupling associated with
every MSc in a MSA (see Equation 2).

δ(MSc) =

vi ∈ MSc ∧ vj /∈ MSc∑
sc(vi, vj) (1)
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Coupling(MSA) =

∀MSc∈MSA∑
δ(MSc) (2)

In the MSA presented in Figure 2(b), Microservice Algorithm

has three dependencies to another microservice, as for example
Parameter.getGroups(...) depends on Node.getId(...). This de-
pendency has 6 static calls, as we can observe in the first item
of the tuple (6,7,10). To compute the coupling of this first mi-
croservice, we sum the static calls for those three dependen-
cies (Equation 1), as follows: δ(Microservice Algorithm) = 6 +
4 + 2 = 12. Microservice Project has two dependency to
other microservices, namely a dependency with 20 static calls to
Microservice Algorithm and a dependency with 3 static calls to
(Microservice Authentication). This lead to δ(Microservice Project)
= 20 + 3 = 23. Microservice Authentication has no dependency to
other microservices, then δ(Microservice Authentication) = 0. Finally,
the coupling for the candidate solution is Coupling(MSA) = 12 + 23 + 0
= 35, which is the sum of coupling for every microservice (Equation 2).

2. Cohesion: cohesion is defined by dividing the number of the static calls
between methods within the microservice boundary, i.e., the set of meth-
ods assigned to the candidate, by all possible existing static calls, similarly
to [13]. Hence, this measure indicates how strongly related the methods
are within a microservice candidate. In order to compute cohesion, the
ce function is defined in Equation 3 as a boolean function indicating the
existence of at least a static call. The cohesion of a microservice candi-
date is presented in Equation 4, where |MSc| is the cardinality of a MSc.
Basically, Equation 4 divides the number of static calls by the number of
all possible dependencies between methods of a microservice candidate. In
this sense, the denominator of Equation 4 is the combination two-by-two
of all methods within a MSc. The total cohesion of a solution is the sum
of the cohesion associated with every MSc in a MSA (see Equation 5).

ce(vi, vj) =

{
1, ifsc(vi, vj) > 0

0, otherwise
(3)

C(MSc) =

∑∀vi∈MSc∧vj∈MSc ce(vi, vj)

|MSc|(|MSc| − 1)

2

(4)

Cohesion(MSA) =

∀MSc∈MSA∑
C(MSc) (5)

Let us consider the MSA presented in Figure 2(b) to illus-
trate the computation of Cohesion. According to the denomina-
tor of Equation 4, the number of all possible dependencies (in-
dependently of the direction) between the five methods withing
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Microservice Algorithm is obtained by
5(5− 1)

2
= 10. However,

among all these possible two-by-two combinations withing this mi-
croservice, there is only one existing dependency with sc(vi, vj) >
0 (Equation 3), namely between Parameter.createOutput(...) and
Parameter.createInput(...). This means that the sum of all existing
dependencies with static call greater than 0 is equal to 1, representing the
the numerator of Equation 4 . In this case, C(Microservice Algorithm) =
1

10
= 0.1. For Microservice Project, the number of all possible depen-

dencies is
4(4− 1)

2
= 6, without existing any dependency, which lead to

C(Microservice Project) =
0

6
= 0. For Microservice Authentication

the computation of possible dependencies is
2(2− 1)

2
= 1 and it has one

dependency, then C(Microservice Authentication) =
1

1
= 1. Finally,

Cohesion(MSA) = 0.1 + 0 + 1 = 1.1.
3. Feature Modularization: a microservice architecture (MSA) can have

microservice candidates (MSc) composed of methods belonging to several
features. We used the vertices labeled to recommend feature modulariza-
tion in the microservice candidates with fine granularity and limited re-
sponsibility. The predominant feature number for a MSc is the number
of occurrences of the most common feature divided by the sum of all fea-
tures occurrences within MSc. Equation 6 defines the predominant feature
(pf function) of a MSc, where FMSc

is a set of occurrences by features
in a MSc. The feature modularization of a microservice candidate is de-
fined in Equation 7, that is, a measure of the number of occurrences of
the most common features divided by the sum of all features occurrences
within a microservice candidate. This equation avoids the fact that each
microservice candidate has largely different features. The feature modular-
ization of a solution MSA is the sum of the predominant features number
in every MSc added to the division of the number of distinct predominant
features (|FRCA|) in the MSA by the number of microservice candidates
(|MSA|), as shown in Equation 8. It is desired to have a degree of feature
modularization as high as possible.

pf(MSc) = max ∀k∈FMSc
{k} (6)

f(MSc) =
pf(MSc)∑∀k∈FMSc {k}

(7)

F (MSA) =
∑

∀MSc∈MSA

f(MSc) +
|FRCA|
|MSA|

(8)

To illustrate the computation of feature modularization, we recall that
MSA of our example implements three features, namely Algorithm,



12 Assunção et al.

Project, and Authentication. Starting with Microservice Algorithm, the
first step is identify the maximum occurrence of the predominant fea-
ture (Equation 6). In this case, all methods of this microservice are from
the feature Algorithm, i.e., pf(MSc) = 5. This value is the numerator
for Equation 7, which is divided by all occurrences of features withing
the microservice that in this case is also five:

∑∀k∈FMSc{k} = 5. Then,

f(Microservice Algorithm) =
5

5
= 1. The value 1 is the perfect one

for a microservice, meaning it has only methods of a single feature. The
other microservices will have the same value of feature modularization,
since in our example, each microservice has methods belonging to only

one feature. In other words, f(Microservice Project) =
4

4
= 1 and

f(Microservice Authentication) =
2

2
= 1. Finally, the feature mod-

ularization for the whole architecture is F (MSA) = (1 + 1 + 1) +
3

3
= 4.

4. Network Overhead: Some non-functional requirements may be affected
by the network overhead of the identified microservices. To minimize the
overhead, we created a heuristic that uses dynamic information to pre-
dict the network overhead. The heuristic uses the size of the objects and
primitive types passed as parameters between methods during the execu-
tion of the legacy system. In addition, the heuristic considers the network
overhead caused by the adopted protocol to communicate with the future
extracted microservices. For example, the HTTP protocol adds a header to
each call and, therefore, the size of this header is considered in our estima-
tion of network overhead. The network overhead measurement is presented
in Equation 9 where the function P (vj) returns the set of arguments used
in the execution of the method vj . The function sizeOf(p, m) is the size of
the p-th parameter in the m-th call from vi to vj . Data traffic function (dt)
is computed as shown in Equation 10, where dc function is the total of calls
from method vi to method vj in execution time. The network overhead of
MSc (see Equation 11) is the sum of all data traffic within their methods,
and the network overhead of a proposed MSA is defined as the sum of the
sizes of the network traffic data to each MSc (see Equation 12).

overhead(vi, vj ,m) =

∀p∈P (vj)∑
sizeOf(p,m) (9)

dt(vi, vj) = max
m=dc(vi,vj)
m=1 (overhead(vi, vj ,m)) (10)

O(MSc) =

∀vi∈MSc∧∀vj /∈MSc∑
dt(vi, vj)

(11)

Overhead(MSA) =

∀MSc∈MSA∑
O(MSc)

(12)
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To compute the network overhead of a solution in Figure 2(b) we use
the second and third information of the triple in the edge labels, namely
dc the dynamic calls and the ds size of data used in the communication
between method. The values of ds is basically the result of Equation 9,
that is obtained from the execution of the legacy system. Equation 10
considers this information and the number of dc to identify the maximum
potential data traffic between methods. For the sake of simplicity, in
this illustrative example we consider as result of Equation 10 the values
of ds presented in the edges as the maximum value. In Equation 11
we compute the total of data traffic between methods of different mi-
croservices. For example, three methods of Microservice Algorithm

communicate with methods of other microservice, namely
dt(Attribute.getName(...), Project.getFileType(...)) = 3,
dt(Manager.addListener(...), Project.getFileType(...)) = 5,
and dt(Parameter.getGroups(...), Node.getId(...)) = 10. In
this case, O(Microservice Algorithm) = 3 + 5 + 10 = 18.
Similarly, O(Microservice Project) = 50 + 2 = 52 and
O(Microservice Authentication = 0, as this latter does not communi-
cate other microservices. Finally, Overhead(MSA) = 18 + 52 + 0 = 70.

5. Reuse: The reuse of a microservice candidate is measured by the relation-
ships between the microservice candidate and the user of the legacy system
(e.g, calling the API or user interface). To do so, static and dynamic anal-
ysis are combined to observe the level of reuse of a microservice within
the microservice architecture. In the dynamic analysis, each microservice
candidate is reusable when it is directly called by a user. This concept is
captured by the mdu function (microservice directly called by the user).
mdu function considers the system executions that allow identifying dy-
namic calls between vertices, including start points by the user.
Equation 13 measures the reuse associated with each microservice candi-
date. Such an equation captures whether each microservice is useful for
other microservices in the architecture or directly by the user. Whenever a
microservice candidate is reused at least twice, the microservice candidate
indicates an adequate reuse level. Ideally, a microservice should be reused
as much as possible or at least twice [8]. Thus, whenever a microservice
candidate is reused at least twice, the result of Equation 13 indicates an
adequate reuse level of the microservice (i.e., r(MSc) = 1).
The reuse of a microservice architecture is defined in Equation 14, where
|MSA| is the number of microservices. Reuse assumes the value 1 when
all microservices are used at least twice by another microservice or the
user. Its value ranges from 0 to 1. The goal is to maximize the reuse of the
microservices encompassed by a solution.

r(MSc) =

{
1, if

∑vi∈MSc∧vj /∈MSc sc(vj , vi) +mdu(MSc) > 1

0, otherwise
(13)
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Reuse(MSA) =

∑∀MSc∈MSA
r(MSc)

|MSA|
(14)

For our example in Figure 2(b), we use Equation 13 to compute
the sum of the first and second information of the triple of all
external call to methods withing a microservice. To compute the
reuse of Microservice Authentication we observe that its method
User.getUser(...) is called by ServerProject.isLocked(...) that be-
longs to another microservice. In this case, the sum of sc = 3 and dc = 4 is
greater than 1, so r(Microservice Authentication) = 1. The other two
microservices of this architecture candidate also have their methods called
at least twice, which also lead to r(Microservice Algorithm) = 1 and

r(Microservice Project) = 1. Finally, Reuse(MSA) =
1 + 1 + 1

3
= 1.

3.3 Genetic Operators

In the current version, our approach focuses on the use of a mutation operator,
which is based on related studies that adopted genetic algorithms [38,39]. The
reason for focusing on such a mutation is to avoid architectural violations,
guarantee accuracy and consistency, which is pointed by Harman and Tratt as
very complex when applying crossover operators for the optimization of soft-
ware designs [33]. The mutation of one individual consists of moving methods
from one microservice candidate to another one, i.e., regrouping vertices in
the graphs composing different microservices. In a simplified form, we can see
the mutation operator as an analogy of the move method refactoring [27].

3.4 Previous Findings

In the studies that are the basis of this extension [11, 12], we have observed
some interesting findings. In a first evaluation of the use of many-objective op-
timization for identifying microservices [12], the results pointed out that the
criteria of feature modularization, network overhead, and reuse introduced a
new perspective in the optimization of the solutions. Also, we observed that
these additional criteria are not subsumed by coupling and cohesion. Fur-
thermore, the obtained solutions allow restructuring features to be smoothly
migrated to a microservice architecture. On the other hand, it was noticed that
human interaction during the evolutionary process would obtain solutions to
better satisfy the developer’s expectations.

In another study [11], we evaluated the performance of NSGA-III in com-
parison with NSGA-II, which is the algorithm used in related work [38], using
the traditional criteria of coupling and cohesion to optimize the microservice
identification. Based on results of two performance indicators, namely HV
and IGD (Section 4.4), and statistical analysis we observed that NSGA-III
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outperformed NSGA-II even when optimizing only two objectives. This con-
firmed that the NSGA-III was the right choice for the optimization algorithm
of toMicroservices. In addition to the analysis based on two objectives, we
performed a preliminary comparison of toMicroservices with a RS consider-
ing the five criteria as objectives [11]. Using only two performance indicators,
we observed that the identification of microservices is a complex problem,
requiring an optimization strategy. This becomes clear as toMicroservices

always outperform the RS.
In addition to the preliminary quantitative analysis, we interviewed eight

experienced developers of the legacy system to collect their opinion about the
potential adoption of solutions obtained by toMicroservices when optimiz-
ing five objectives [11]. As an overall result of this qualitative analysis we
observed that developers found the solutions generated by toMicroservices

adoptable in practice. Four participants would adopt all microservices iden-
tified by our approach, three participants would adopt some microservices
identified by toMicroservices, and only one participant would not adopt
any microservice.

As the main reason why some participants would not adopt all microser-
vices generated by toMicroservices is the granularity level of the obtained
microservices, in another study [3], we asked the same participants to evalu-
ate three solutions generated by toMicroservices using different granularity
levels during another interview. The results show that toMicroservices is
flexible and able to generate solutions according to the developers’ needs and
preferences. Empirical evidence reveals that the solutions generated by our ap-
proach allow restructuring features to be smoothly migrated to a microservice
architecture. The main findings of our study [3] include discovering that (i)
the features were modularized as microservices aligned with the business capa-
bilities of the legacy system; (ii) the developers of the legacy system consider
mainly the criteria included in our strategy; and (iii) reuse and customization
opportunities arouse from the redesign of features as microservices.

It is important to highlight that the goal of toMicroservices is not to
provide a ready-to-use solution, but providing near-optimal solutions that can
be used as a starting point by software engineers, who must to analyze some
generated solutions and make the necessary changes before the migration pro-
cess.

The preliminary findings of our study show that toMicroservices is a
promising approach to aid the microservice identification during the process
of modernization of legacy systems with microservices. The fact of using five
criteria that were observed as useful in practice is beneficial for the optimiza-
tion process. However, the relationship among these criteria, their conflicting
or dependent nature, has not been investigated yet. For instance, there is no
study in the literature investigating the relationship among the network over-
head, feature modularization, and reuse criteria. Also, a more strong quanti-
tative analysis with more performance indicators and statistical analysis can
bring more evidence on the advantages of using toMicroservices in industrial
settings.
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4 Study Design

To answer the RQs raised in Section 1, we designed the study described next.

4.1 Industrial Subject System

Our case study relies on a monolithic legacy system, in the domain of the oil
and gas industry, currently subject to a modernization process by extracting
features as microservices. This legacy system has been maintained for more
than 15 years and is predominantly developed in Java. The developers reported
that the maintenance of this system is very complex and time-consuming. In
addition, either the inclusion of new features or the adoption of new technolo-
gies is a cumbersome task.

System under analysis. The monolithic architecture of the legacy system
shares software libraries and holds highly coupled components with overlap-
ping responsibilities. Our partner has experienced severe challenges with this
architecture when trying to rapidly change or develop new features: (i) the
legacy system holds a huge amount of features, resulting in unnecessary com-
plexity and confusion; (ii) there are many calls and dependencies cross-crossing
the system, resulting in hard to identify errors; and (iii) developers are lim-
ited to the technologies of the legacy system. To overcome these problems, we
aim to rely on the extractive approach to substitute the large components of
the monolithic architecture by ten independent microservices. The benefit of
adopting an extractive approach is directly to group related responsibilities
of the system. Thus, evolution and maintenance opportunities can be easily
discovered. Through interviews with our partner, we obtained three main fea-
tures they prefer to extract as microservices in the first moment: algorithm,
project, and authentication.

– Algorithm: provides algorithms information by a REST API, including pa-
rameters, binary, documents, and connection points with other algorithms.
In addition, this information can be stored using different resources.

– Project : responsible for the concept of a collaborative environment between
the system’s users. This collaborative environment includes shared projects
and their metadata between different users or types of users.

– Authentication: authenticates and provides information of system users.
This includes the creation and validation of tokens, verification of login
and password, update of password, and related simple information about
users. Source codes related to this feature are used extensively in the entire
system for checks and information retrieval.

Information use. As discussed in Section 3, our approach uses a
mapping of features to their corresponding methods and a dependency
graph between methods (see Fig. 2(a)). As an example, the method
Manager.addListener(...) implements part of the feature algorithm and
it makes a call to the method Project.getFileType(...) that implements
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the feature project. After the complete mapping, we can use this informa-
tion to identify microservice solutions. For example, we have as output three
groupings: the left blue grouping of methods labeled algorithm, the right red
grouping of methods labeled project, and the right down green grouping of
methods labeled authentication (see Fig. 2(b)). These groups are used by the
many-objective algorithm to optimize the criteria of coupling, cohesion, net-
work overhead, feature modularization, and reuse. In the following sections,
we will explain the algorithm in detail.

4.2 Implementation Aspects and Parameter Settings

State-of-the-art approaches to deal with the identification of microservices are
based on NSGA-II [38, 39, 62], which is the most common evolutionary algo-
rithm to deal with multi-objective problems. However, NSGA-II faces some
challenges and difficulties for problems with more than three objectives [19].
Since our approach relies on five criteria, which are the objective functions, we
adopt NSGA-III as the search-based algorithm. NSGA-III is designed to face
up with many objectives at the same time [19]. Despite NSGA-III has a dif-
ferent strategy to compose the set of non-dominated solutions, its algorithmic
complexity is quite similar to NSGA-II [18]. This algorithm was implemented
on top of jMetal1 that is a Java-based framework that includes modern state-
of-the-art algorithms [23]. We also used jMetal to implement a RS algorithm,
which is considered as the baseline in our study.

To represent solutions in our implementation, we create a class Vertex

that represents each method. Then, a class named Microservice has a
list of List<Vertex> vertices, which stores the methods that belongs
to a microservice. Finally, a solution is an object of a class named
MicroservicesSolution that implements the jMetal interface Solution. This
class has a field List<Microservice> microservices, described above, that
stores all microservices of the architecture.

In the implementation, we decided to treat the microservice identification
as a minimization problem. Hence, the objective functions related to cohe-
sion, feature modularization and reuse have their values inverted during the
evolutionary process. In addition, a constraint related to the minimum and
maximum numbers of methods per microservice was established in order to
balance the granularity and preserve the reasonability of each microservice.
Solutions that violate this constraint are discarded.

Settings. For the experiments, NSGA-III was configured as follows. The
population size of 100 individuals. The maximum number of fitness evalua-
tions equal to 10,000, which is also the stopping criterion. In addition to these
traditional parameters, there are three more parameters related to our prob-
lem: (i) the fraction of methods exchanged by the mutation operator, that was
set to the minimum of 1 to the maximum of 50% of all microservice methods;

1http://jmetal.sourceforge.net/

http://jmetal.sourceforge.net/


18 Assunção et al.

(ii) the number of microservice candidates was set to 10; and (iii) number of
methods allocated in each microservice was set to between 3% and 16% of
the total number of methods. For the RS, the random selection of vertex per
each microservices follows the size of the constraints previously presented. For
statistical significance, we executed 30 independent runs for each algorithm.

Solution sets. For analysis, we rely on three sets of solutions: (i) PFapprox

is the Pareto front of non-dominated solutions obtained in each run of an
algorithm. Since each algorithm is run 30 times, we have 30 PFapprox sets for
each algorithm. (ii) PFknown is the set of non-dominated solutions found by
an algorithm, considering the union of all solutions obtained in all its runs,
eliminating the dominated ones. (iii) PFtrue is conceptually known as the set
with ideal solutions for a problem. As the PFtrue of our problem is not known
in advance, we adopted a common way to estimate this Pareto front that is
using the non-dominated solutions found by all algorithms in all runs [65].

Feature label in the vertices. We developed an extractor to perform a
pre-processing traceability step. This step was performed before the optimiza-
tion process to label each vertex with the feature that it implements. In other
words, our optimization process is independent of this extractor. We present
how the extractor works next. In spite of that, for other legacy systems that
use different technologies, the data can be extracted differently.

The input for the extractor was provided by a developer with experience
in the legacy system. The input was the source code, the list of features to re-
design with corresponding entry points to their source code, and the functional
test cases related to these features. For the feature labeling, the expert on the
legacy system informed the entry points in the trace execution of the three
features selected to become microservices, and their subfeatures. Each entry
point defines one of the possible entries to the feature boundaries. Then, all
entry points are used in the trace execution to label the vertices of the graph
representation (Section 3.1). This definition of the entry points were the only
manual analysis required during the analysis of the legacy system.

Our extractor is based on execution of functional test cases. Here, the entry
points are used to associate features with execution traces. In summary, an
entry point is a relationship between a regular expression and a feature. These
expressions are compared with patterns in the names of packages, classes, or
methods in the execution trace. When there is a match between the entry
point with a feature label, and the method in the execution trace, it is labeled
in graph vertex with the related feature. All methods in the execution trace
that are not entry points are then labeled with the feature of the last entry
point (lower depth number).

To illustrate this process, Listing 1 shows an excerpt of trace execution
and Listing 2 presents entry points to Algorithm and Project. When perform-
ing the comparison, Algorithm.getAdminIds is matched with the regular ex-
pression associated with the feature Algorithm, since this method is an entry
point and labeled with this feature. Also, the following methods with higher
depth are also labeled with the feature Algorithm until reach the method
ProjectService.getAllProjects. At this point, this method matches the
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regular expression Project, then it is labeled with the feature Project as well
as ProjectInfoService.getInfo because it has a higher depth. Next, the
method Algorithm.algorithmsToVector is labeled with Algorithm, due the
lower depth as an entry point is Algorithm and not Project.

Listing 1 Execution trace example

Name:Algorithm.getAdminIds#Depth:12

Name:Algorithm.getAllAlgorithms#Depth:13

Name:Algorithm.loadLocalAlgorithmCache#Depth:14

Name:Algorithm.getPermission#Depth:13

Name:AlgorithmPermission.getAllPermissionIds#Depth:14

Name:AlgorithmPermission.getPermissionIds#Depth:15

Name:ProjectService.getAllProjects#Depth:16

Name:ProjectInfoService.getInfo#Depth:17

Name:Algorithm.algorithmsToVector#Depth:14

Listing 2 Entry points of the features Algorithm and Project

Algorithm<Algorithms.getAdminIds>

Project<ProjectService.*>

4.3 Correlation Test

To analyze the correlation between the five objectives (RQ1), we firstly ap-
plied the Shapiro-Wilk normality test [54] to verify the distribution of data.
In the cases the test points out that all sets have non-normal distribution, the
Spearman correlation test [55] is applied to check for any correlation (positive
or negative) between the pairs of objective functions. Spearman’s rank corre-
lation coefficient is a non-parametric measure of rank correlation (statistical
dependence between the rankings of two variables). Both tests were applied
with confidence level of 95% (significance level 5% - p-value< 0.05). These
tests are widely used in Software Engineering studies [2, 16, 17]. To better
understand the correlation coefficient, we used the following scale [35]:

– 0.9 to 1.0 (or -0.9 to -1.0): very high positive (or negative) correlation;
– 0.7 to 0.9 (or -0.7 to -0.9): high positive (or negative) correlation;
– 0.5 to 0.7 (or -0.5 to -0.7): moderate positive (or negative) correlation;
– 0.3 to 0.5 (or -0.3 to -0.5): low positive (or negative) correlation;
– 0.0 to 0.3 or 0.0 to -0.3: negligible correlation.

4.4 Performance Indicators

The use of performance indicators is the most common way to compare
multi/many-objective optimization algorithms [60]. In this way, we can ob-
serve their use in many SBSE studies [16, 17]. Performance indicators enable
us to assign scores to Pareto fronts found by multi/many-objective optimiza-
tion algorithms [60]. In addition, these indicators enable the decision-maker
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to visualize the consequences of his/her choices regarding the performance
of a criterion at the expense of one or other criteria, supporting appropriate
decisions [60].

As a single performance indicator alone cannot provide a comprehensive
measure for multi/many-objective optimization algorithms [60], we choose to
use six performance indicators with different purposes, namely the evaluation
of convergence, distribution, coverage and cardinality of solutions [65]. Gen-
erational Distance (GD) [56] and Inverted Generational Distance (IGD) [53]
measure the closeness of the solutions to the theoretical Pareto front. Hyper-
volume (HV) [65] considers both closeness and diversity at the same time.
Coverage (C) [64] compares a pair of algorithms in terms of the dominance of
the solutions found. Error Ratio (ER) [56] counts the number of Pareto opti-
mal solutions in the set found by an algorithm. Furthermore, we used the Eu-
clidean Distance to the Ideal Solution (ED) [14] as an indicator to identify the
solution with the best trade-off among the objectives as the decision-makers
usually prefer to select this solution from the set of alternative solutions. These
indicators are described in details in the following.

HV measures the area of the objective space from a reference point to a
front of solutions [65]. This indicator enables to analyze both closeness and
diversity of a Pareto front [60]. In this study, we use the HV computed by a
recursive and dimension-sweep algorithm [26]. To compute HV we normalized
each PFapprox between 0 and 1, and adopted a reference point with the value
of 1.1 for all five objectives. Pareto fronts with high values of HV are the best
since their solutions are far from the reference point.

GD and IGD measure the convergence/closeness between PFapprox and
PFtrue. GD is an error measure used to examine the distance of the solutions
found by an algorithm (PFapprox) to the best solutions known (PFtrue) [56].
IGD is an indicator based on GD, but with the goal of evaluating the distance
from PFtrue to PFapprox, i.e., the inverse of which is considered by GD [53].
Values of GD and IGD closer to 0 are desired, which indicates that the solutions
of both PFapprox and PFtrue are close to each other.

ED is used to find the closest solution to the best theoretical objectives,
i.e., an ideal solution [14]. For our minimization optimization, to compute ED,
we normalized each PFapprox between 0 and 1, and the ideal solution has a
value equal to 0 for all objectives. The solution with the lowest value of ED
represents the solution with the best trade-off among the objectives.

C measures the dominance between two sets of solutions [64]. C(PFa, PFb)
represents a value between 0 and 1 according to how much the PFb solutions
are dominated by the PFa solutions. Similarly, C(PFb, PFa) returns how many
solutions in PFa are dominated by solutions in PFb. A value equal to 0 for C
indicates that the solutions of the former set do not dominate any element of
the latter set and, on the other hand, the value 1 indicates that all solutions
of the latter set are dominated by elements of the former set.

ER is an error measure to compute the number of PFknown solutions that
are not in PFtrue [56]. Higher values of ER means that the algorithm does not
have good convergence. The lower the ER, the better is the performance of
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the algorithm because a larger number of solutions of PFknown were found in
PFtrue.

4.5 Statistical Analysis

To analyze the statistical difference between NSGA-III and RS regarding the
performance indicators (RQ2), firstly we evaluated the distribution of the val-
ues with the Shapiro-Wilk normality test [54], the same test used in the anal-
ysis of the correlation between criteria. Then we used the Wilcoxon rank-sum
test [6], which is a non-parametric test based on the median of the values, and
Welch Two Sample t-test [58], which is a parametric test based on the mean of
the values. Furthermore, we also compute the effect size with Â12 Vargha and
Delaney [57] . These tests are widely used to assess search-based algorithms
in Software Engineering [2, 16,17].

5 Results and Analysis

Next we describe and analyze the results of our study to answer the RQs.

5.1 RQ1 - Objective Functions Correlation

Multi/Many-objective algorithms usually return a few solutions when the ob-
jectives are directly related since the optimization of one objective implies
in the optimization of the other one. On the other hand, a high number of
solutions is obtained in the presence of conflicting objectives since the opti-
mization of one objective compromises the other one. In this way, as mentioned
in RQ1, we evaluated whether there is a significant correlation between each
pair of objective functions used by NSGA-III. The sample-set used as input
to evaluate the correlation between the functions is the PFknown obtained by
this algorithm. NSGA-III obtained the median of 76 non-dominated solutions
per run, pointing out to the existence of negative correlations between the
objectives.

Analysis. To analyze the correlation between the five objectives, we firstly
applied the Shapiro-Wilk test to verify the distribution normality of the values
for each objective function. Table 1 presents the results of the distribution test.
The basis for this analysis is the PFknown, which is the set of non-dominated
solutions obtained after the union of the solutions found in the 30 independent
runs. The results point out that none of the distributions is normal, i.e., p-
value < 0.05.

Table 2 presents the results of the Spearman correlation test, for each pair
of objective functions, including the p-value and the correlation level. This
table also presents the interpretation of the correlation level, which provides
evidence on the existence of a correlation between the investigated objective
functions. Negative values mean that the correlation is negative, i.e., if one
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Table 1 Shapiro-Wilk test results for objective function values achieved by PFknown sets
of NSGA-III.

Objective Function p-value Conclusion

Cohesion 4.117e-10 Non normal distribution
Coupling 2.731e-05 Non normal distribution
Feature Modularization 0.001058 Non normal distribution
Overhead 2.2e-16 Non normal distribution

function increases the other one always decreases. It is important to highlight
that the criteria of feature modularization, cohesion, and reuse must be nat-
urally maximized. However, as we are dealing with a minimization problem,
in the objective functions related to these three criteria the values have been
inverted.

Table 2 Spearman Rank Correlation Coefficient between PFknown sets.

Objective Functions p-value
Correlation

Conclusion
Level

Cohesion x Coupling 2.2E-16 -0.7699418 High negative correlation
Cohesion x Feature Modularization 2.2E-16 -0.4439882 Low negative correlation
Cohesion x Overhead 0.0002356 -0.1569073 Negligible correlation
Coupling x Feature Modularization 2.23E-02 0.1805772 Negligible correlation
Coupling x Overhead 0.002094 -0.1315126 Negligible correlation
Feature Modularization x Overhead 3.85E-10 -0.3043058 Low negative correlation

High correlation. The test indicates a significant negative correlation
between cohesion and coupling, which means the objective functions are highly
related but are inversely proportional. We can realize the correlation between
these functions by observing the fitness of the solutions in Figure 4(a), since
as coupling decreases, cohesion increases and vice-versa.

Low correlation. The Spearman coefficient also indicates a negative cor-
relation between the pairs (cohesion, feature modularization) and (feature
modularization, overhead), however, the correlation is low. We noticed that
the other correlations are negligible, which points out the other pairs of func-
tions are not interdependent. Hence, we can conclude that the optimization
of all functions is important for the microservice identification problem as
four criteria are not highly interdependent and these criteria allow evaluating
different characteristics of each obtained solution.

Many-objective optimization is necessary. Regarding the conflict
among the objective functions, we can see in the third column of Table 2
that all correlations are negative, except for the pair (coupling, feature mod-
ularization). Despite the correlation level, the negative correlations suggest
that there is some kind of conflict between some pairs of objectives, namely
(cohesion, coupling), (cohesion, feature modularization) and (feature modu-
larization, overhead), justifying the need of many-objective optimization. The
value of the objective function related to the reuse of all solutions is 1.0. This
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single fitness value impaired the application of statistical tests. Therefore, the
objective function reuse was not considered for the correlation tests.

Answering RQ1: The results reveal the objective functions for cohe-
sion and coupling are highly conflicting and interdependent. The results
also indicate the feature modularization function slightly compromises
the cohesion and overhead functions. The other functions are not highly
interdependent, justifying the need of applying a many-objective opti-
mization algorithm.

5.2 RQ2 - Quantitative comparison between NSGA-III and RS

The quantitative analysis between NSGA-III and RS takes into account six
performance indicators (see Section 4.4). These indicators have different Pareto
fronts as a source of information (see Section 4.2). Four indicators, namely HV,
GD, IGD, and ED, were computed for the PFapprox sets. Two indicators, which
are ER and C, were computed based on PFknown.

Comparison of PFapprox sets. Table 3 presents the results for the per-
formance indicators of HV, GD, IGD, and ED. To corroborate the analysis
of these indicators, Figure 3 presents the boxplots. Regarding the individual
behavior of each algorithm, the results of the Shapiro-Wilk test (second and
third column in the table) present the distribution of the values computed
for each performance indicator. Most of the values are normally distributed,
except for IGD for NSGA-III. This strongly indicates the algorithms have a
standard performance. In the qqplots of Figure 3 we can see that most of
the data points are close to the reference line. For the exception case, IGD
for NSGA-III, some points are distant from the reference (the right-side of
Figure 3(h)). The values of the effect size measure are presented in the last
two columns of the table, where we can observe that NSGA-III finds the best
solutions in almost 100% of the runs for all indicators.

Regarding the comparison between the performance of NSGA-III (our ap-
proach) and RS, the fourth and fifth columns in Table 3 present the results of
the Wilcoxon rank-sum test (based on the median) and Welch t-test (based
on the mean). Both tests point out a significant difference between the two
algorithms for all indicators. We can identify the best algorithm by observ-
ing the boxplots in Figure 3. On one hand, higher values of HV are the best

Table 3 Statistical Tests and Effect Size Measure Among PFapprox sets.

Indi- Shapiro-Wilk Wilcoxon Welch Â12 Effect Size
cator NSGA-III RS rank-sum t-test NSGA-III RS

HV 0.88560 0.32040 2.20E-16 2.20E-16 1 0
GD 0.97780 0.73620 4.84E-13 7.00E-12 0.96667 0.03333
IGD 0.00018 0.43570 4.84E-13 4.15E-15 0.96667 0.03333
ED 0.37950 0.56310 2.20E-16 2.20E-16 1 0



24 Assunção et al.
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(e) QQPlot GD NSGA-III
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(h) QQPlot IGD NSGA-III
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Fig. 3 Boxplots and QQPlots of the PFapprox sets.

(Figure 3(a)); on the other hand, lower values GD, IGD, and ED are the best
(Figures 3(d), 3(g), and 3(j)). NSGA-III has the best performance for these
four indicators.

Comparison of PFknown sets. Table 4 allows us to analyze the ability
of the algorithms on finding the best solutions. ER considers the performance
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Table 4 Error Ratio (ER) and Coverage (C) between PFknown sets.

Algorithm #PFtrue #PFknown ER C

NSGA-III
554

545 1.63% 0.990044
RS 904 98.37% 0

on finding solutions in the PFtrue and C compares the dominance between
the PFknown sets. The PFtrue set is composed of 554 solutions from which
545, which is the whole PFknown set, were found by NSGA-III; and 9 out of
904 found by RS. This huge difference in finding solutions in the PFtrue is
demonstrated by ER in the fourth column of Table 4. Regarding the paired
comparison of the PFknown sets, C (fifth column in the table) indicates that
the solutions of NSGA-III dominate 99.0044% of the RS solutions, which cor-
responds to 895 of 904 solutions. On the other hand, no solution of NSGA-III
is dominated by solutions of RS. Hence, NSGA-III found the best solutions.

Trade-off visualization. Figure 4 demonstrates the trade-off among the
criteria for both PFknown sets. At first, we can observe that the range of
criteria values of solutions found by NSGA-III are better than solutions of
RS. Our problem is a minimization and most of the NSGA-III solutions are
in the lower parts of the figure. In both charts the conflicting interdependence
between coupling and cohesion is clear. In addition, as discussed in the previous
RQ, there is also some interdependence among the criteria of cohesion, feature
modularization and network overhead as one can observe in the blue lines of
Figure 4(a).
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Fig. 4 Solutions’ trade-off among the five criteria of PFknown sets.
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Answering RQ2: Both algorithms have a standard behavior as ob-
served in the distribution of results. The comparison with the six per-
formance indicators confirm NSGA-III has the best performance in
comparison to RS.

6 Threats to Validity

In this section we discuss the main threats to the validity of our study.

Internal Validity. The internal validity of this study is threatened by the
evolutionary algorithm adopted by toMicroservices and its parameter con-
figuration. We adopted the state-of-the-art evolutionary algorithm NSGA-
III [19] that has shown high accuracy to solve many-objective problems in
the SBSE field. The algorithm parameters were set based on an existing
work [38].Nonetheless, we acknowledge that the use of other parameter values
may lead to different results. Still, conducting experiments with other algo-
rithms and tuning parameters is an important next step, which is part of our
future work.

The second threat is related to the set of microservice candidate solutions
generated by NSGA-III. Due to the many-objective nature of NSGA-III, the
solutions may converge to a different set of local optimum, i.e., microser-
vice candidates, in each run without finding the global optimum. To mitigate
this threat, we executed 30 independent runs, as recommended in [2, 16, 17],
and used performance indicators that analyze different solution sets, such as
PFapprox and PFtrue.

The generated solutions can also be subject to bias regarding the man-
ual definition of the entry points for the feature mapping and the execution
traces. The result is also dependent of the legacy system at hand, since all
execution traces are generated using given test cases. To mitigate this threat
in our study, the developer in charge of the microservice identification has suf-
ficient knowledge of the system under analysis, including test cases, execution
environment, and parameter settings. Thus, we believe that the test cases and
defined entry points for the feature mapping cover the maximum number of
business capabilities and thus can find suitable microservices.

Another limitation is the lack of an objective function to evaluate the
database impact, which we intend to address in future work. Despite this
limitation, the network overhead function – which measures the traffic of data
between microservices – is able to partially capture such kind of data coupling
softening this threat.

External Validity. A threat to external validity is related to the used case
study. The obtained results cannot be generalized as our study is based on one
industrial case study. Even though this system has the typical characteristics
of any legacy code and is a consolidated real-world legacy system with more
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than 15 years of existence under the process of migration to microservices. We
focused on a single system to be able at making an in-depth, robust analysis
of the performance of our approach. Subsequently, we can perform such an
analysis also over other systems by extending our current implementation to
generalize our findings and improve our approach and its results.

7 Related Work

The problem of identifying microservice from legacy systems can be seen as
a software remodularization problem [1, 5]. This problem have been widely
investigated in the literature from different perspectives. For example, as a
sequence of refactoring operations [61], by using structural and non-structural
characteristics of the system under analysis [36], including expert knowledge
in the process [32], and to organize feature of software product lines [50]. A
critical analysis about the use of traditional criteria o coupling and cohesion
for the remodularization is presented by Candela et al. [7]. Due the complexity
of this problem, search-based approaches have been applied with satisfactory
results [44, 48]. Despite all these pieces of work, next we focus on those ones
in the scope of microservices.

A recent study mapped existing pieces of work focusing on migrating legacy
systems to microservices [59]. The main result of this work is a roadmap pro-
cess for conducting the migration. Among the activities that should be per-
formed for the migration, the decomposition the legacy system for identifying
the microservices is acknowledge as one of the most complex ones. Similarly,
the study of Ponce et al. [52] reports a rapid review on 20 primary studies that
performed the migration to microservices. These authors classified approaches
for the identification of microservices in three groups: (i) model-driven, which
rely on design elements as source of information, such as business objects,
domain entities, functional and non-functional requirements, and data flow di-
agrams; (II) static analysis, approaches based on the source code that use the
dependencies, couplings (static or evolutionary), and cohesion between source
code entities for identifying the microservices; and (iii) dynamic analysis, ap-
proaches focusing on the analysis of the system functionalities at runtime,
mainly using execution traces as source of information to group source code
entities that will originate microservices. Fritzsch et al. [29] also describes cat-
egories of approaches for the decomposition of legacy systems into microser-
vices. In addition to static, dynamic, and model-driven (named Meta-Data
aided in this work), they included the (iv) workload-data category, in which
approaches focus on finding suitable microservices cuts by measuring the ap-
plication’s operational data. Fritzsch et al. [29] also highlight that finding an
appropriate granularity for the microservices can be seen as the main chal-
lenge during the migration. Yet, they mention about a decomposition around
business capabilities, using bounded context [40].

Some studied are devoted to investigate the identification of microser-
vices in practice. In a survey with practitioners that migrated legacy systems
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to microservices, Fritzsch et al. [30] reported that usually the identification
of microservices is based functional decomposition. Less frequently, Domain-
Driven Design was also observed among practitioners. Finally, some practi-
tioners mentioned using non-systematic approaches. Surprisingly, some survey
participants mentioned that they preferred rewrite the legacies using current
technologies, because of the absence of a suitable decomposition approach.
This reinforce the need of studies like ours presented in this paper. Another
survey with experts was conducted by Carvalho et al. [10]. In this study, the
authors investigated the criteria used for identifying microservice in legacy
systems. The result of their study revealed that practitioners commonly con-
sider at least four criteria simultaneously, which characterizes the microservices
identification as a many-objective problem.

In order to identify common activities performed during the migration to
microservices, Balalaie et al. [4] reported a set of migration patterns. Among
the patterns, there are two related to the indentification of microservices:
(i) using a domain-driven design to identify subdomains, which constitute
a bounded context, of the business that the system is operating in, similarly
to what was pointed by Fritzsch et al. [29]; and (ii) identifying microservices
using a data ownership, by finding different cohesive sets of data entities that
can be grouped together with their business logic into a microservice. How-
ever, these authors make it clear that a proper method for the identification
depends on the context and characteristics of the legacy, which they refer to
situational method engineering [34].

To deal with the complexity of the identification of microservices, same
approaches uses search-based software engineering [16]. Existing search-based
approaches for microservice identification apply evolutionary algorithms, such
as genetic algorithms [38,39,62], to optimize some source code quality criteria
extracted from execution traces, and thus, generate a set of microservice candi-
dates. These solutions commonly make use of one or two criteria [38,39,45,62].
The two most conventional criteria adopted in the literature by automated
approaches are coupling [38,39,45,62] and cohesion [38,39,62]. The approach
proposed in [62] also considers a non-functional criterion as their search-based
approach is developed to optimize the identification of microservices with high-
cohesion-low-coupling and load balance of CPU and memory consumption. In
addition to the use of only a few criteria that does not entirely represent
the practical needs of microservices identification, the performance of existing
approaches is mostly evaluated on illustrative non-industrial systems.

To fill the gap existing in the literature and practice, toMicroservices
uses five relevant in practice and well-defined criteria, namely coupling, cohe-
sion, feature modularization, network overhead, and reuse [9, 10] (see criteria
definition in Section 3.2). This implies that we turn the search-based microser-
vice identification problem into a many-objective problem. To the best of our
knowledge, there is no effort to solve such SBSE problems based on many ob-
jectives to formally represent the several criteria involved in the microservice
identification. This new perspective represents an important challenge in this
field. Yet, a recent exploratory study with practitioners has revealed that the
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efficiency of migrating legacy systems to microservice architectures depends on
several criteria beyond coupling and cohesion [9,10] e.g., the criterion network
overhead is relevant given the architectural style of distributed components. In
case of important criteria that are not considered by an approach, its solutions
can hardly align with the desired benefits of microservices.

Another point in which our study is different from existing literature, is that
work has a comparison of performance, that is, how the criteria are properly
optimized by toMicroservices and random search. The performance compar-
ison considers different criteria and search-based algorithms commonly used.
Thus, our work has a complementary nature by conveying previous studies and
further investigating additional criteria to better satisfy business needs. Fur-
thermore, other recent studies, such as [31,41,43], have employed optimization
algorithms to deal with problems related to microservice architectures, how-
ever their focus is not microservice identification as ours.

8 Conclusion

In this work, we quantitatively analyzed a many-objective optimization for
the microservice identification problem in a two-fold perspective: (i) the cor-
relation among the objective functions, and (ii) comparing the performance of
NSGA-III against a RS. The experimental results pointed out that the prob-
lem deserves to be tackled as a many-objective problem because the criteria
that are important to be considered from the developer’s point of view are
conflicting and interdependent. NSGA-III solved the referred problem more
efficiently than a RS achieving a greater diversity of non-dominated solutions
with different compromises among the objectives.

We now intend to improve our approach by investigating the application
of crossover operators. We also plan to improve the reuse metric as it was
not so sensitive to quantify the difference among the solutions regarding the
solution’s reuse degree. In addition, we evaluated an extractive approach for
identifying microservices from the legacy system. However, we also plan to
evaluate our approach to deal with the proactive approach, where a software
system is designed from scratch as a set of microservices; and the reactive
approach, in which the microservices are used to evolve a legacy system.
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