Modernizing Legacy Systems with Microservices: A Roadmap

Daniele Wolfart
PPGComp - Western Parana State
University, Brazil

Wesley K. G. Assuncédo
PPGComp - Western Parana State
University, Brazil

Ivonei F. da Silva
PPGComp - Western Parana State
University, Brazil

DI - Pontifical Catholic University of
Rio de Janeiro, Brazil

Diogo C. P. Domingos
PPGComp - Western Parana State
University, Brazil

Ederson Schmeing
PPGComp - Western Parana State
University, Brazil

Guilherme L. Donin Villaca
PPGComp - Western Parana State
University, Brazil

Diogo do N. Paza
PPGComp - Western Parana State
University, Brazil

ABSTRACT

Legacy systems are long-lived applications, with obsolete tech-
nology and degraded architecture. These systems hamper digital
transformation and innovation, and require a great amount of re-
sources for maintenance. The modernization of monolithic legacy
systems is a strategy to promote better evolution and maintenance,
taking advantage of new technologies such as microservices. Mi-
croservice architectural style is a paradigm to develop systems as a
suite of small and autonomous services, communicating through
a lightweight protocol. However, the migration of legacy systems
to microservices is complex. Although we can find several stud-
ies on this topic, they usually focus on specific activities, e.g., the
identification of the microservice boundaries in the legacy code.
Also, existing pieces of work do not cover real-world scenarios,
since they do not take into account organizational, operational,
and technical aspects. To overcome this limitation, in this paper
we present a roadmap for modernizing monolithic legacy systems
with microservices. The roadmap is distilled from the existing body
of knowledge, describing common activities and input/output in-
formation. The proposed roadmap is composed of eight activities,
grouped in four phases, namely initiation, planning, execution, and
monitoring. The main contributions are: (i) serve as a basis for prac-
titioners to plan, execute, and monitor the modernization process;
(ii) be a reference for researchers to design new studies; and (iii)
motivate tool builders to deal with existing needs.

CCS CONCEPTS

« Software and its engineering — Software evolution; Soft-
ware architectures; - General and reference — General litera-
ture; « Computer systems organization — Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2021, June 21-23, 2021, Trondheim, Norway

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9053-8/21/06...$15.00
https://doi.org/10.1145/3463274.3463334

KEYWORDS

Software Migration, Software Evolution, Cloud Computing

ACM Reference Format:

Daniele Wolfart, Wesley K. G. Assuncéo, Ivonei F. da Silva, Diogo C. P.
Domingos, Ederson Schmeing, Guilherme L. Donin Villaca, and Diogo do N.
Paza. 2021. Modernizing Legacy Systems with Microservices: A Roadmap.
In Evaluation and Assessment in Software Engineering (EASE 2021), June
21-23, 2021, Trondheim, Norway. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3463274.3463334

1 INTRODUCTION

The large majority of existing industrial systems are long-lived
applications usually developed in a monolithic architecture. Due
to extensive maintenance and obsolete technology, these archi-
tectures decay and degrade [45]. Legacy systems hamper digital
transformation, makes innovation more difficult, and require a great
amount of resources for maintenance, draining investment that oth-
erwise could be used in system evolution, e.g., developing new fea-
tures [21, 32]. To remain competitive, companies have been modern-
izing these monolithic legacy systems [27]. “Software modernization
attempts to evolve a legacy system, or elements of the system, when
conventionally evolutionary practices, such as maintenance and en-
hancement, can no longer achieve the desired system properties” [45].
During modernization, a legacy system is re-engineered [6] or mi-
grated [25] to a modern architecture or platform. The modernization
leads to benefits such as easing engineering activities, satisfying
user needs, or achieving business goals [44].

Nowadays we can observe a trend on adopting microservice
architectures as strategy for modernizing monolithic legacy sys-
tems [10, 27, 50]. Microservices became popular around 2014 [29],
mainly due to their adoption by big players, as for example Net-
flix [51] and Uber [17]. Moreover, other factors have contributed
to the popularity of microservices. Firstly, microservices are in-
spired by the service-oriented architecture (SOA) principle. Accord-
ing to this principle, complex applications are built as a suite of
small, loosely coupled, and autonomous components that encapsu-
late business capabilities and communicate with each other using
language-agnostic APIs [13]. Splitting large applications into mi-
croservices provides independence for agile teams and optimizes

https://doi.org/10.1145/3463274.3463334
https://doi.org/10.1145/3463274.3463334
https://doi.org/10.1145/3463274.3463334

EASE 2021, June 21-23, 2021, Trondheim, Norway

the deployment process [36]. Secondly, some studies argue that
microservices reduce maintenance and evolution effort, increase
availability of services, ease the inclusion of innovation, ease the
incorporation of DevOps in the development lifecycle, and facilitate
scalability [48]. Finally, there are many open-source tools to aid
the deploying, managing, and monitoring of the microservices, e.g.,
Docker, Kubernetes, Prometheus, and Grafana, to cite some [50].
Microservices emerged in industry but only recently have caught
the attention of the software-engineering research community [11,
29]. We can find, in the literature, secondary studies on the topic of
migrating monolithic system into microservices [11, 19, 41], clas-
sification of refactoring approaches for the modernization with
microservices [20], and industrial reports/surveys with practition-
ers [4, 10, 19, 50]. Despite the growing interest in the modernization
with microservices in both practice and research, there is still a lack
of comprehensive studies on how to conduct such a moderniza-
tion. Another limitation is that existing pieces of work usually do
not take into account organizational and operational perspectives
of the modernization, focusing mostly on technical aspects of mi-
croservices. Furthermore, existing studies mostly focus on specific
activities of the process, e.g., identification of the microservices
boundaries in the code. Based on this, companies lack a roadmap
for real world scenarios, covering the entire modernization process
and dealing with organizational, operational, and technical aspects.
These limitations might hamper or make complex the proper use
of microservices as a strategy to modernize legacy systems.
Based on aforementioned limitations, the goal of this paper is
to present a roadmap, i.e., a process to conduct the migration, for
guiding practitioners on modernizing legacy systems with microser-
vices. For the definition of such a roadmap, we collected, analyzed,
discussed, and organized the existing literature on this topic. Our
study (presented in Section 2) relies on 62 papers found by con-
ducting a systematic mapping. The resulting roadmap (described in
Section 3) is composed of eight activities and covers the moderniza-
tion phases of initiation, planning, execution, and monitoring. We
also describe the input and output information for each activity.
The contribution of the roadmap defined in our study (high-
lighted in the related work, in Section 5) is: (i) for practitioners,
our roadmap can serve as a basis to decide, plan, execute the mod-
ernization process, and monitor the microservices. Instead of a
starting blind(folded), we provide a comprehensive set of activities
encompassing existing specialized literature; (ii) for researchers,
our results can serve as a starting point to design new studies, iden-
tify gaps, e.g., focusing on the activities less investigated in the
literature; and (iii) for tool builders, serve as a reference to develop
automated support for the migration/modernization process.

2 STUDY DESIGN AND EXECUTION

As our goal is to define a roadmap for modernizing legacy systems
with microservices, from the perspective of the existing body of knowl-
edge in the literature, we posed the following research question:

RQ. Why and how are monolithic legacy systems migrated to
microservices? For answering this RQ, we considered the driving
forces that motivates the modernization, common activities con-
ducted when modernizing with microservices, and the input used
and output generated in each activity.

Wolfart, et al.

Table 1: Databases used for identifying primary sources

Database ‘ URL ‘ Studies
ACM Digital Library | http://dl.acm.org 53
IEEE Xplore http://ieeexplore.ieee.org 72
Web of Science http://www.isiknowledge.com 35
Science Direct http://www.sciencedirect.com 99
Scopus http://www.scopus.com 52
SpringerLink http://www.springerlink.com 111

To achieve this goal and answer the posed RQ, the methodology
of our study is composed of the following steps:

(1) Primary sources selection: identification, screening, and
validation of studies from digital libraries.

(2) Data extraction: reading of papers to extract relevant data
to answer the posed RQ.

(3) Data Classification and roadmap definition: the data ex-
tracted were classified and analyzed in order to establish a
comprehensive roadmap for modernizing legacy systems
with microservices.

2.1 Primary Sources Selection

For the selection of primary sources, we followed a methodology
based on a systematic mapping, according to the process proposed
by Petersen et al. [39]. A systematic mapping study is designed to
provide an overview of a research field [38, 39]. From the RQ of our
study, we derived the following sets of keywords: (i) “monolith”, (ii)
“migrate, transform, refactor, decompose, extract, partition”, and (iii)
“microservices”. To define the search string!, we composed these key-
words with their lexical and syntactic alternatives (synonym, plural,
gerund, etc.). For defining the search string, we also considered
eight related pieces of work in the topic [11, 14, 19, 22, 33, 41, 46, 48].
The string was used for searching studies in six digital libraries, as
presented in Table 1. The search on these libraries was conducted
on March, 28th 2020. A total of 422 studies were retrieved from all
databases. Other digital libraries could be used, however, we chose
the ones frequently considered in software engineering reviews.

For the screening of the studies, we adopted four inclusion cri-
teria (IC) and two exclusion criteria (EC): IC-1: papers written in
English and peer reviewed; IC-2: the goal of the study is the migra-
tion from monolithic to microservices; IC-3: the study reports on
strategies, guidelines, processes, etc., to migrate from monolithic to
microservices; IC-4: full-text available; EC-1: secondary or tertiary
studies; and EC-2: tutorials, keynotes, position papers.

From the 422 retrieved studies (see Table 1), after applying the
ECs, 79 studies were removed (422-79 = 343). Then, by consider-
ing the ICs for the title, keywords, and abstract, 260 studies were
removed (343-260 = 83). Finally, after entirely reading the studies,
we removed another 21 papers (83-21 = 62). The final set of papers
were composed of 62 primary sources, presented in Appendix 6.

To validate the final set of primary sources, we selected four
secondary studies that completely [20, 41], or partially [11, 18],

!The final search string was: ((microservices OR micro-services OR “micro services”) AND
(refactoring OR transformation OR migration OR partition™ OR granular* OR extract™
OR decomposition) AND (monolith*))

http://dl.acm.org
http://ieeexplore.ieee.org
http://www.isiknowledge.com
http://www.sciencedirect.com
http://www.scopus.com
http://www.springerlink.com

Modernizing Legacy Systems with Microservices: A Roadmap

Table 2: Secondary studies for validating primary sources

| Secondary study ‘ Year ‘ Studies ‘ Overlap

Fritzsch et al. [20] 2018 10 10
2 | Di Francesco et al. [11, 18] | 2019 103 22
3 | Ponce et al. [41] 2019 20 20

focus on studies on the topic of modernization/migration from
monolithic to microservices. We observed the overlap between
studies identified in the libraries and the ones already mapped
in the secondary studies. Table 2 presents the secondary studies,
together with the number of studies they discuss and the studies we
identified as relevant for our work (overlap). The selection of the
primary sources from the secondary studies also take into account
the ICs and ECs, resulting in 42 distinct studies in the overlap.

In the four secondary studies presented in Table 2, in which
[11] is an extension [18]), a total of 4, 17, and 14 relevant studies
were exclusively identified from one source, namely #1, #2, and
#3, respectively. In addition, 2 studies were identified from both in
#1 and #3, 1 study from #2 and #3, and 4 studies among the three
secondary studies. From this selection of studies, we identified 42
relevant studies. Compared with the results of our systematic map-
ping study, all of the 42 papers identified as relevant are among the
62 primary sources. The 20 studies not identified in the secondary
studies, are mainly from 2019 and 2020. This was expected, since
the secondary studies published in 2019 have not been mapped by
these more recent studies. These results strongly confirm that we
composed a relevant set of primary sources for our study.

2.2 Data extraction

To answer the RQ of our study, we extracted three pieces of infor-
mation from each of the 62 primary sources, as follows:

o Driving forces: the motivations to start or that originated
the modernization of the monolith legacy system with mi-
croservices.

o Process: which were the activities/steps described in the
paper to conduct the modernization with microservices.

e Input/Output information: the pieces of information used
as input and generated as output for each activity/step along
the modernization.

The extraction was done by six authors of this paper, and vali-
dated by two experts on microservices. The authors in charge of the
extraction, received a training of 20 hours about the topic of mod-
ernizing with microservices, to level their background in the topic.
This training was based on the discussion of three papers [2, 5, 48].

2.3 Data Classification and roadmap definition

To analyze the driving forces and distill a roadmap, we perform a
classification and a qualitative analysis of the raw data to find sig-
nificant concepts and explore their relationships [7]. Three authors
focused on classifying the driving forces, two authors classified
the input and output information, and two authors dealt with the
classification of activities/steps. For cross-validation, at least two
authors inspected each primary study to collect the evidence. Also,
at least other two authors discussed the data extract for refining the

EASE 2021, June 21-23, 2021, Trondheim, Norway

classification. The final set of driving forces and the definition of the
roadmap were obtained by an incremental process, in refinement
cycles. All this process was aided by the use of spreadsheets.

3 RESULTS AND ANALYSIS

This section describes the results and analysis of our study. To
answer our research question, firstly we describe the driving forces
(why) to modernize their legacy. Secondly, we focus on the activities
and information used (how) for conducting the modernization.

3.1 Driving Forces

We identified 11 driving forces for modernizing legacy systems
with microservices. Table 3 presents these driving forces sorted by
the most mentioned ones.

Table 3: Driving forces mentioned in the primary sources

Driving Force [Total [Studies
Optimized 27 |S[54-56, 58-60, 62, 64, 68, 76, 78, 80, 81,
scalability 83, 86, 87, 92, 95-98, 100, 101, 104, 105,
108, 109]
S[52, 54, 59, 63-65, 68-71, 73, 74, 77, 81,

Independent and | 23

automated 89-92, 97, 98, 102, 103, 105, 109]

deploy

Easier 17 |S[64, 66, 67, 70, 73, 75, 78, 83, 85, 90, 94,
maintenance and 96, 104, 107, 109, 112]

evolution

Independence of | 13 |[S[63, 69, 79, 81, 84, 89, 90, 97, 101, 103,
teams 107, 111, 112]
S[52, 56, 57, 69, 70, 72, 77, 80, 81, 86, 103,

Loosely coupled | 12

services 106]

Cohesive 10 |S[56, 61, 69, 72, 77, 80, 82, 88, 90, 99]
services

Technology 9 |S[53, 60, 68, 81, 90, 98, 103, 108, 113]
flexibility

Infrastructure 8 |S[60, 62, 64, 93, 98, 102, 108, 113]
facilities

Agility enabler S[62, 67, 69, 71, 82, 98, 101]

Easier reuse 3 |S[59, 64, 67, 94]

Reduced time to 3 |S[68, 69, 71]

market

Considering operational aspects of the software develop-
ment/delivery, scalability and deployment were mentioned in
43,55% and 37,10% studies, respectively, they are the two most
common driving forces. For example, these two driving forces
are related to faster S[81, 98, 103] and independent deploys
S[52, 54, 65, 74, 77, 90, 92, 97, 103, 105, 109], continuous delivery
S[63, 64, 73, 77, 103], software replication S[56], and increase the
elasticity of large applications S[62, 78, 86, 108]. In the same cate-
gory, independence of teams (20,97%) and infrastructure facilities
(12,90%) are also mentioned. In the former, we can cite as example
the team autonomy S[52, 69, 81, 90, 91, 97, 101, 103, 109]. For the
latter, easy configuration of cloud services S[113], high reliability
S[108] and availability of services S[60, 62, 64], and optimization
of computational resources S[113].

EASE 2021, June 21-23, 2021, Trondheim, Norway

From a technical perspective, easier maintenance and evolution
(27,42%) are explicitly mentioned as motivation to adopt microser-
vices. This driving force is a consequence of optimized modularity
properties such as cohesive and loosely coupled services (together
these forces are mentioned in 35,48% studies). Interestingly, only in
five primary sources both coupling and cohesion are mentioned as
a concern S[56, 69, 72, 77, 80]. Furthermore, technology flexibility
(14,52%) and easier reuse (6,45%) are also pointed as driving forces
that companies rely on to migrate to microservices.

Organizational driving forces are less often mentioned in the pri-
mary studies. For example, microservices are seen as agility enablers
(11,29%) that are related to faster deployment cycles S[69, 71, 98].
Finally, reduced time to market (=5%) is related to the use of mi-
croservices for different purposes/systems S[71]. Another example
may be the incentive to the DevOps culture, with an emphasis on
collaboration between developers and teams, ensuring shorter lead
time and greater agility in software development S[69].

In summary, we can observe that several driving forces moti-
vate the modernization. These driving forces are based on different
perspectives, namely operational, technical, and organizational. In-
terestingly, there is not a dominant driving force that is mentioned
in all papers. Yet, differently from some studies advocating mostly
for technical benefits of microservices, e.g., use of different tech-
nologies [4, 5, 14, 33, 41], we can see that supporting operational
tasks are the most common driving forces to adopt microservices.

3.2 Activities and Information

From the 62 primary sources, eight studies do not clearly present
a modernization process, namely S[53, 64, 68, 75, 76, 82, 91, 105].
They only discuss problems with legacy systems, benefits of mi-
croservice adoption, or lessons learned with a modernization with
microservice. Based on that, our analysis of activities and infor-
mation of the modernization process relies on 54 primary sources.
As described in Section 2, our study aims at describing how the
modernization of legacy systems with microservices is done. In this
sense, the information collected in the primary sources was the
basis to define a roadmap for modernization.

In order to define the roadmap, we performed a comprehensive
analysis of data extracted from the primary sources (see Section 2.3).
Then, we defined a roadmap composed of eight activities, cover-
ing four different phases of the modernization with microservices.
Figure 1 presents an overview of the phases and its activities for
our proposed roadmap. The phases were proposed after we defined
all the eight activities of the roadmap. When we grouped the ac-
tivities, we observed a resemblance to the project management life
cycle presented in the well-known Project Management Body of
Knowledge (PMBOK Guide) [26, 40]. This was the basis for naming
the phases of the proposed roadmap. To corroborate our analysis,
Table 4 presents the studies that discuss each activity of the pro-
posed roadmap. As expected, the first activities have received much
more attention than the last ones. This indicates that the research
on the topic of modernizing legacy systems with microservices
is still in early stages, highlighting the need for more studies. In
the following, we describe details of each activity, and discuss the
observed input and output information.

Wolfart, et al.

s 1. Analyze the driving forces
k!
g Feasibility No ,
satisfactory? Wyeg Terminate

g 2. Understand the legacy system
2 v
c
E > 3. Decompose the legacy system —
. v

> 4. Define the microservice architecture

g 5. Execute the modernization =
c
S v
3
9] > 6. Integrate the microservices and the legacy —
]

v

> 7. Verify and validate the microservices —
. v
E > 8. Monitor the microservices / infrastructure [
E T
S Satisfactory

No migration?

Figure 1: Proposed roadmap for modernizing legacy systems
with microservices

1. Analyze the driving forces: in this first activity, companies
have to clearly identify/understand the limitations faced with the
legacy system. Based on such limitations, managers, engineers,
developers, and, in some cases, the customers as well, can reason
and decide whether a modernization with microservices is a fea-
sible solution. At this point, these stakeholders of all perspectives
(technical, operational, and organizational) can foresee the benefits
of modernization and how long it will take to achieve them. It is
important to highlight that the modernization of legacy systems is
a long and risky process [45]. Also, this process directly impacts all
perspectives of a company. Considering this, the activity of Analyze
the driving forces is paramount to avoid unsuccessful modernization
and waste of resources.

The driving forces found in the primary sources, which are re-
lated to limitations of legacy systems and expected benefits of
microservices, were presented in the previous subsection. However,
each company has its own scenario, leading to different needs, con-
straints, available resources, e.g, human, financial, and material,
and expectations with the modernization. As conflicts can emerge
among those driving forces, a trade-off analysis could be performed
by the stakeholders. In addition to that, we recommend practi-
tioners to have a clear view of the fundamentals of microservices,
not only regarding the technical point of view but also in a broad
sense [34, 35].

e Input information: driving forces (see Section 3.1), busi-

ness goals, and resources available for conducting the mod-
ernization.

Modernizing Legacy Systems with Microservices: A Roadmap

EASE 2021, June 21-23, 2021, Trondheim, Norway

Table 4: Activities of the proposed roadmap identified/mentioned in the primary sources

‘ Activity ‘ Total ‘ Studies

Analyze the driving forces 62 |S[52-113]

S[56, 62, 63, 65, 67, 69-71, 73, 74, 77, 79, 84, 85, 87, 88, 90, 92, 95, 101, 102, 104, 109, 112, 113]

#
1
2|Understand the legacy system | 25
3
4

[
Decompose the legacy system | 46 |S[52, 54-59, 61-63, 65-67, 69-73, 77, 79-81, 84-86, 88—-90, 92-104, 106, 107, 109, 111, 112]
[

Define the microservice 35 |S[52, 58-62, 66, 69-74, 77-81, 87-90, 93-98, 101, 107-109, 111-113]
architecture
5|Execute the modernization 19 |S[52, 59, 60, 69, 72, 79-81, 86, 88, 89, 94, 98—100, 106, 109, 111, 112]
6 | Integrate the microservices and| 7 [S[60, 89, 94, 98, 106, 111, 112]
the legacy
7| Verify and validate the 8 |S[69, 72, 73, 79, 83, 100, 109, 110]
microservices
8| Monitor the microservices / 4 |S[59, 72,99, 111]
infrastructure

e Output information: decision on conducting the modern-
ization of the monolithic legacy system with microservices.

2. Understand the legacy system: the goal of this activity is to
analyze and explore the legacy system to understand its implemen-
tation, its features, how these features interact with each other, and
how the monolithic legacy architecture is organized. This activity
is fundamental to the next ones.

According to a primary source S[62], the first task to under-
stand the legacy system is to list all the features for which the
system was designed for. The following task is the identification
of the implementation artifacts of each feature to subsequently
decouple/extract them as microservices, which is known as feature
location [12, 43]. Practitioners can also use reverse engineering
techniques to create high-level artifacts, e.g., UML diagrams, from
low level artifacts, e.g., source code, to ease the understanding of
the legacy system [6, 28]. For example, in S[73] engineers used code
analysis tools and existing documentation to obtain a high-level
view of system structure. Some studies describe the use of Domain-
Driven Design (DDD), which recommends that the structure of the
software code should match the business domain [15]. The primary
sources S[69, 72, 113] use DDD to structure legacy system features
in domains and subdomains with clear context and boundaries.
These contexts help to understand and address complexities based
on business intentions.

Regarding the information used as input to Understand the
legacy system, studies do not make clear which artifacts they
used S[56, 63, 74, 79, 87, 88]. Among the identified artifacts, source
code is the most common. In addition to development artifacts,
one study also mentions the use of slides, presentations, and con-
tracts with customers, and unwritten knowledge among developers
and engineers S[73]. Considering the output information, in addi-
tion to the artifacts presented below, stakeholders involved in the
modernization must have a clear understanding of legacy system
requirements S[79].

e Input information: source code S[67, 69-71, 73, 84, 85, 95,
101, 104, 109, 113]; requirements and textual documents S[65,
73, 77]; test cases S[84]; UML diagrams S[73, 95, 102]; use
case specifications S[92, 112]; logs S[109, 113]; and database
models/schema S[69, 73, 90].

e Output information: data flow graphs, execution traces,
and call graphs S[56, 65, 88, 92]; usage scenario models, load
profiles, and performance constraints S[84, 88]; visual repre-
sentation of the system structure S[74, 88]; business capabil-
ities and system operations S[56, 112]; feature model S[87];
and the most used functionalities, domains and subdomains,
and bounded contexts S[69].

3. Decompose the legacy system: this activity aims to break
down the monolithic architecture into small and cohesive units,
which will be transformed into microservices. The decomposi-
tion/identification of microservices in monolithic legacy systems is
acknowledged as one of the most complex activities of the modern-
ization process S[109]. This is one of the most investigated activities,
being the focus of 85% of primary sources (46 out of 54, see Table 4).
Although the topic of decomposing software system in modules
has been discussed for a long time [37], the limits among modules
in monolithic architectures are flexible, and the systems eventually
evolve into a “big ball of mud” [16]. When these modules are mi-
croservices, the limits are physical, splitting their implementation,
distribution, management, and monitoring S[61]. However, Decom-
pose the legacy system is not only about partitioning the system to
facilitate maintenance, but also defines how the system will be able
to evolve and scale S[61]. Some authors recommend that the identi-
fication of microservices should be an incremental process S[78].
They argue that due to the complexity of this activity, practitioners
will learn how to do it better for each microservice decoupled from
the legacy S[78].

An important issue in the activity of identifying the microser-
vices is the definition of the correct level of granularity, that is, the
trade-off between size and number of microservices S[61]. Eliciting
strong interface limits at the right level of granularity is a challenge
inherited from SOA [13]. One study highlights that the proper de-
composition of the legacy system into microservices, in the right
granularity, is paramount to companies’ sustainability S[109]. Be-
sides, when identifying what would be the correct level of granu-
larity, practitioners should consider a checking task regarding the
microservice smells [47], i.e., antipatterns, such as megaservice and
microservice greedy.

EASE 2021, June 21-23, 2021, Trondheim, Norway

The starting point to decompose the legacy system is to define
the responsibility for each microservice, indirectly defining the size
of the microservices S[78]. Some authors recommend the microser-
vices to be designed around business capabilities, and allow their
independent development S[76, 90]. A strategy to carry out the
decomposition and define the granularity of microservices is by
following the Principle of Single Responsibility (SRP) S[70]. SRP
states that each system unit must have no more than one reason
to change [30]. This means that if we have different software com-
ponents, each one must have an independent responsibility and
need. In addition, to enable independent development, each mi-
croservice can be developed using technologies that best suit the
characteristics of the business capability S[76]. Another strategy
is the identification of microservices based on system operations
and their data S[112]. The sources of information here are models
that describe the system operations, i.e., the system API, and the
variables that contain the information that the operations write
and read. The decomposition is achieved by grouping operations
so that each microservice can internally access and change only its
own data. When a microservice needs to refer, i.e., read or write, to
a data that belongs to another microservice, this is achieved only
through the microservice API This allows a good decomposition
that guarantees low coupling, as well as high cohesion.

To aid the identification of microservices, some tools and ap-
proaches have emerged. An example is Service Cutter S[98], a tool
to identify microservices that are highly cohesive and loosely cou-
pled. An approach with the same goal is proposed in S[61], which is
based on the semantic similarity of foreseen/available functionality
described through OpenAPI specifications. In addition, some tools
use clustering algorithms to “cut” the monolith S[67, 77, 98]. Differ-
ently, the study S[102] presents a method to identify microservices
based on the analysis of UML class diagrams.

To corroborate our findings, a recent survey with practitioners
indicates that defining microservice granularity is a multi-criteria
task [50]. The decomposition of a legacy system into microser-
vices should consider, for example, resource consumption, team
structure, delivery cycles, business capabilities, and data access. As
we discussed, this activity is related to technical, operational and
organizational aspects of companies.

e Input information: the output of the previous activ-
ities S[54, 55, 57, 94]; desired non-functional require-
ments S[54, 66, 79, 80, 111]; cloud service provider require-
ments S[93]; and API specifications S[61].

e Output information: microservice candidates S[54, 55, 66,
72,717, 81, 97, 103] or identified microservices S[57, 58, 100,
104].

4. Define the microservice architecture: this activity is respon-
sible for defining a microservice-based architecture with the de-
sign decisions to meet functional and non-functional properties
defined in previous activities. In a simple view, a microservice
architecture describes the microservices, their APIs, and commu-
nications, which is usually done by using a lightweight protocol,
e.g., HTTP/RESTful S[76, 87, 113]. Here, practitioners also have to
define a strategy of service discovery. In this architecture, the user
interface, business logic, and databases (data, logic, and behavior)
are packaged in a single application/microservice and deployed

Wolfart, et al.

on a server S[112]. In addition, despite the benefit of technology
flexibility enabled by microservices (see Table 3), Wang et al. [50]
identify that organizations should restrict the number of program-
ming languages in order to facilitate maintenance and reuse.

Although the previous activity is designed to identify/decide on
how to decompose the legacy system, here practitioners can refine
the scope of the microservices, reasoning about the architectural
role of each microservice, taking into account heterogeneity and
decentralized governance S[78]. Despite the fact that our proposed
roadmap has not considered stakeholders for each activity, [50]
recommends the definition of owners for each microservice, with
well-defined service responsibilities and boundaries.

As part of the architecture definition, practitioners should decide
about having alocal infrastructure, or using a cloud service provider,
such as Amazon Web Services, Microsoft Azure, or Google Cloud.
The infrastructure must provide resilience and high availability in
microservices, allowing for scalability management and continuous
deployment S[112].

e Input information: the output of the previous activi-
ties S[109]; non-functional requirements such as availability,
security and flexibility S[87, 88]; microservices interactions,
dependencies, and constraints S[87]; Data access S[94]; Fa-
cade pattern S[90, 98].

e Output information: microservice architecture
model S[60, 79] with design decisions regarding
communication protocol S[60, 72]; and cloud service
provider/infrastructure S[93].

5. Execute the modernization: the goal of this activity is to con-
duct the modernization by re-engineering the monolithic legacy
system into microservices. According to S[111], microservices re-
duce the development complexity in comparison to monolithic
architectures. However, for the modernization that relies on exist-
ing artifacts, this can lead to more effort in comparison to greenfield
projects.

Some authors reinforce the adoption of continuous integration
and deployment during the migration S[59, 60, 72], using tools such
as GitLab and Jenkins. Another point is automation of the configura-
tion management, for instance, using Docker containers S[93] with
Spring Boot S[59], and Artifactory for package repository S[59].
It is important to highlight that microservice architecture enables
DevOps [1, 49], in this sense, integration between development and
operation practices can be leveraged during the modernization [3].
Similarly to monolithic architectures, refactoring should be per-
formed regularly and documentation is as important as the source
code S[58]. In addition, when implementing microservices, code
management will be necessary. Challenges like managing common
code shared by multiple microservices and preventing/dealing with
breaking API changes will be faced by developers. In this case, API
gateways and “sidecar technology” should be considered [50].

A primary source describes a model-based approach for the au-
tomatic modernization of monoliths to microservices S[63]. This
approach relies on a domain-specific language, namely JetBrains
MPS. A domain-specific language is a computer language cre-
ated/specialized to a particular application domain, differently from
a general-purpose language, which is broadly applicable across
domains [31].

Modernizing Legacy Systems with Microservices: A Roadmap

e Input information: the output of the previous activities;
available technologies and tools S[60, 86, 89, 100, 112]; de-
velopers and engineers experience S[111].

e Output information: microservices implemented accord-
ing to the defined architecture S[59, 80]; transition documen-
tation S[89].

6. Integrate the microservices and the legacy: this activity is re-
sponsible for the integration between microservices and the legacy
system. As the modernization with microservices is an incremental
process S[78], following a strangler pattern [19], practitioners have
to decide on how to put together the legacy and the modernized
parts of the system. This is one of the least explored and briefly
discussed activities in the primary sources (see Table 4).

As we discussed in previous activities, architectural choices need
to facilitate continuous delivery and deployment during the mod-
ernization [23]. A strategy to aid the activity of Integrate the mi-
croservices and the legacy is the use of feature toggles [24] and back-
ward/forward compatibility [42]. Feature toggles is a technique that
supports rollback, canary testing, and A/B testing.

e Input information: the output of the previous activi-
ties S[60, 89]; workflows design and service interface S[111];
legacy scripts S[106].

e Output information: integrated services S[106, 111], Rest
API S[112], API Gateway S[98].

7. Verify and validate the microservices: this activity focuses
on verifying and validating whether the microservices were devel-
oped properly and the integration with the legacy was performed
accordingly. This activity of Verify and validate the microservices
can use the legacy system as oracle for testing tasks.

Considering a continuous integration environment, unit tests are
expected to be created during the implementation of microservices,
but in addition, black box integration tests are also required S[109].
According to a primary source S[100], automated tests must be
performed to verify/validate the interoperability of the message
exchanges, and check whether microservices are in accordance
with the specified architecture. In the case of inadequate definition
and implementation of microservices, or other bugs, developers
can go back to the previously proposed activities and refine or rede-
fine the problematic part. As the modernization is an incremental
process, regression testing and continuous integration should be
used to ensure that new bugs are not introduced S[83]. Further-
more, when adopting continuous deployment, practitioners must
consider user’s feedback as part of the modernization verification
and validation S[83].

e Input information: the output of the previous activities;
usability constraints S[100]; improvements and new fea-
tures S[100]; non-functional requirements S[79]; and feed-
back from users S[100].

e Output information: unit and integration tests S[69,
73, 100, 110] and black-box/functional testing S[109] re-
ports; metrics about satisfaction of non-functional require-
ments S[79, 83]; and microservices ready to deploy S[72].

EASE 2021, June 21-23, 2021, Trondheim, Norway

8. Monitor the microservices / infrastructure: this activity is
devoted to constantly check the behavior of the deployed microser-
vices. Monitor the microservices / infrastructure should focus on
service availability, bottlenecks, performance, use of infrastructure
resources, and so on. Here, practitioners are able to evaluate and
analyze information of the modernized system, in comparison to
the driving forces that motivated the modernization (see Activity 1
- Analyze the driving forces and Section 3.1). For example, if we
observed that scalability is the most common driving force for mod-
ernization, then, in this monitoring activity, the performance of
the microservices can be observed. In addition to checking system
health, monitoring can also support decision-making S[59]. For
example, which microservices are the most used by customers, and
should receive more attention from the development experts.

In the recent survey with practitioners working with microser-
vice architectures, all 58 participants agreed to the importance of a
robustness logging and monitoring framework, to achieve a mature
level of microservices development [50]. In addition, 90% of the
participants believe that logging and monitoring should be set up as
early as the project starts. In fact, “early” in our proposed roadmap
means to define, configure, and execute automated frameworks
and tools also in the previous activities, such as Activity 4. Define
the microservice architecture and Activity 5. Execute the modern-
ization [50]. However, these actions can be postponed to a later
phase when the project shows failures and delays [50]. To support
practitioners on conducting the activity of Monitor the microser-
vices/ infrastructure, Dave and Degioanni describe five microservice
monitoring principles [9]: (i) monitor containers and what runs
inside them, (ii) use orchestration systems, (iii) prepare for elastic,
multi-country services, (iv) monitor APIs, and (v) map monitoring
to the organizational structure.

e Input information: the output of the previous activities;
microservices deployed S[72], team structures, development
and operation processes S[59].

e Output information: logs and metrics S[72]; change in
team structures S[59].

4 THREATS TO VALIDITY

In this section we present the threats to validity of our study, and
how we mitigated/reduced them.

Internal Validity: The first threat to internal validity concerns
the terms used in the search string. To address this threat we com-
posed a set of keywords based on secondary studies [11, 14, 19,
22, 33, 41, 46, 48], to make sure of covering the important terms.
The second internal threat is the selection of the digital libraries
to search for primary sources. In addition to selecting well-known
libraries, we also validated the returned results comparing to pri-
mary sources of existing secondary study [11, 18, 20, 41], which
confirmed the reliability of the libraries. The third threat is related
to incorrect classification of primary sources. To reduce this threat,
the authors in charge of the classification received training on the
topic and extensively discussed the extracted data and performed
cross-validation of the data classification. To further mitigate in-
ternal threats, we compared our results with existing secondary
studies, describing similarities and differences found. In addition,

EASE 2021, June 21-23, 2021, Trondheim, Norway

we performed a validation of the proposed roadmap in comparison
to a seminal modernization planning process.

External Validity: Our roadmap is a set of high-level activities
designed to serve as a starting point for the modernization with mi-
croservices. In our perspective, this roadmap can be easily adopted
and aid the conduction of the modernization in different contexts,
proving its external validity. Once we performed a comprehensive
analysis of existing primary studies that describe the modernization
process, the external validity should be appropriate. However, we
believe that validation of the roadmap in real-world scenarios and
with the participation of practitioners are needed.

5 RELATED WORK

This section describes related work on the topic of modernizing
monolithic legacy systems with microservices and highlights exist-
ing differences to our study.

Ponce et al.[41] performed a study relying on 20 primary studies
on modernization with microservices. They conducted a rapid re-
view and identified three techniques, namely model-driven, static
analysis, and dynamic analysis. The most of the techniques use ele-
ments of design as input to identify microservice candidates. This
correlates to some studies identified for the Activity 3. Decompose
the legacy system of our roadmap. Fritzsch et al. [19] performed a
survey with experts that adopted microservice to identify migration
strategies. For example, they identify different ways to decompose
monolithic systems into microservices. They mentioned the use
of the strangler pattern and functional decomposition as strategies.
Carvalho et al. [4] performed a survey with experienced practition-
ers that adopted microservices. They investigated the criteria used
for supporting decision-making along microservice extraction. The
practitioners mentioned that they commonly consider at least four
criteria to identify microservices in legacy systems. Wang et al. [50]
also performed a survey and interviews with practitioners. In this
study they investigated the best practices learned by practitioners
that adopted microservices. These authors also investigated the
challenges faced by practitioners and how these challenges were
overcome. These four studies differ from ours, as they focus on
specific topics and issues of the migration, rather than how the
modernization process is conducted as a whole.

Fritzsch et al. [20] describes a guide for decision making that
classifies the decomposition techniques to aid the architects during
the migration from monolithic to microservices. They discuss refac-
toring activities to support the modernization with microservices.
They mention that decomposition of monolithic into services with
appropriate granularity is the main challenge during the refactor-
ing process. Similarly, Francesco et al. [10] identify and classify
approaches to modernize with microservices. They found that most
existing approaches focus on handling the trade-off between flexi-
bility and complexity in the microservice architecture. Differently
from our study, the goal of these studies is not the definition of a
roadmap for aiding the conducting of the modernization process.

The work most similar to ours is presented by Silva et al. [8],
in which the authors present a modernization process based on
lessons learned from two studies (a pilot and a case study). The
main drawback of their process is its validity, since it relies only

Wolfart, et al.

on authors’ experience. Our roadmap presents a more robust pro-
cess based on a systematic mapping of the literature and on the
results obtained by several researchers. In addition, we present two
additional phases/activities compared to Silva et al. [8].

There are other secondary studies that explore the mi-
croservice architectural style and its relation to important con-
cepts/technologies such as, devops [49], granularity [22], SOA [14],
microservice gains and pains [33], and microservice smells [46].
However, their motivations are different from our study. Although
these studies provide useful insights to understand the migration
process, they do not focus on defining a generic roadmap. In this
context, to the best of our knowledge, our paper is the first to
describe recommendations based on 62 studies about migration.

6 CONCLUSION

Modernization of monolithic systems with microservices is a trend,
which has called the attention of the software engineering research
community. However, despite the existence of many studies on this
topic, most of them focus on specific points of the modernization.
We observed that there is a lack of a comprehensive study investi-
gating the modernization of legacy systems with microservices as
a whole. To fill this gap, this paper presented a study based on a
systematic mapping method to answer the research question: Why
and how are monolithic legacy systems migrated to microservices?

The answer for this question is that, based on 62 studies, we
find 11 different driving forces that motivate the modernization.
These driving forces are related to technical, operational, and orga-
nizational aspects. By an extensive analysis of 54 studies, we could
observe that the modernization is composed of eight activities, cov-
ering the phases of initiation, planning, execution, and monitoring,
which can be accomplished in an incremental manner during the
migration process. The identified activities were the basis to define a
comprehensive roadmap to contribute to practitioners, researchers
and tool builders.

As future work, we consider the validation of our roadmap in
industrial settings. More studies focusing the activities less investi-
gated, namely execution of the modernization, integration of mi-
croservices and legacy, verification and validation, and monitoring
of the modernized system and infrastructure. We also see the oppor-
tunity for the development of tools to support the modernization.

ACKNOWLEDGMENTS

This work is supported by the FAPER] PDR-10 program under Grant
No. 202073/2020 and CNPq under Grant No. 408356/2018-9.

REFERENCES

[1] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices ar-
chitecture enables devops: Migration to a cloud-native architecture. leee Software
33,3 (2016), 42-52.

Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tamburri, and

Theo Lynn. 2018. Microservices migration patterns. Software Prac. Experience 48,

11 (2018), 2019-2042.

[3] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A software architect’s
perspective. Addison-Wesley Professional.

[4] Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assuncéo, Rafael de Mello, and
Maria Julia de Lima. 2019. Analysis of the Criteria Adopted in Industry to Extract
Microservices. In 7th International Workshop on Conducting Empirical Studies in
Industry and 6th International Workshop on Software Engineering Research and
Industrial Practice. IEEE, 22-29.

[2

Modernizing Legacy Systems with Microservices: A Roadmap

(5]

l6

(71
(8]

[10

[11]

[12]

[13

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

~
&

[24

[25]

[26]
[27]

[28

[30

[31]

[32]

[33

[34]

Rui Chen, Shanshan Li, and Zheng Li. 2018. From Monolith to Microservices:
A Dataflow-Driven Approach. In Asia-Pacific Software Engineering Conference
(APSEC). 466-475

E.]. Chikofsky and J. H. Cross. 1990. Reverse engineering and design recovery: a
taxonomy. IEEE Software 7, 1 (1990), 13-17.

Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage publications.

Hugo S. da Silva, Glauco Carneiro, and Miguel Monteiro. 2019. Towards a
Roadmap for the Migration of Legacy Software Systems to a Microservice based
Architecture. In 9th International Conference on Cloud Computing and Services
Science. SciTePress.

Apurva Dave and Loris Degioanni. 2016. The Five Principles of Monitoring Mi-
croservices. https://thenewstack.io/five-principles-monitoring-microservices/
Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2018. Migrating towards
microservice architectures: an industrial survey. In International conference on
software architecture. IEEE, 29-2909.

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Architecting with
microservices: A systematic mapping study. Journal of Systems and Software 150
(2019), 77-97.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of software:
Evolution and Process 25, 1 (2013), 53-95.

Thomas Erl. 2005. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall e, Upper Saddle River, NJ.

Tom Cerny, Michael Donahoo, and Michal Trnka. 2018. Contextual understanding
of microservice architecture: current and future directions. ACM SIGAPP Applied
Computing Review 17 (01 2018), 29-45.

Eric Evans. 2004. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

Brian Foote and Joseph Yoder. 1997. Big ball of mud. Pattern languages of program
design 4 (1997), 654-692.

Susan J. Fowler. 2016. Production-Ready Microservices: Building Standardized
Systems Across an Engineering Organization. O’Reilly.

P. D. Francesco, I. Malavolta, and P. Lago. 2017. Research on Architecting Mi-
croservices: Trends, Focus, and Potential for Industrial Adoption. In International
Conference on Software Architecture. 21-30.

Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2019.
Microservices Migration in Industry: Intentions, Strategies, and Challenges. In
International Conference on Software Maintenance and Evolution. IEEE, 481-490.
Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. 2018.
From monolith to microservices: a classification of refactoring approaches. In In-
ternational Workshop on Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment. Springer, 128-141.
A. Sivagnana Ganesan and T. Chithralekha. 2016. A Survey on Survey of Migra-
tion of Legacy Systems. In International Conference on Informatics and Analytics
(India). ACM, New York, NY, USA.

Sara Hassan, Rami Bahsoon, and Rick Kazman. 2020. Microservice transition
and its granularity problem: A systematic mapping study. Software: Practice and
Experience (06 2020).

Wilhelm Hasselbring. 2018. Software architecture: Past, present, future. In The
Essence of Software Engineering. Springer, Cham, 169-184.

Pete Hodgson. 2017. Feature Toggles (aka Feature Flags). https://martinfowler.
com/articles/feature-toggles.html

Anca Daniela Ionita, Marin Litoiu, and Grace Lewis. 2012. Migrating Legacy
Applications: Challenges in Service Oriented Architecture and Cloud Computing
Environments (1st ed.). IGI Global, USA.

Harold Kerzner. 2017. Project management: a systems approach to planning,
scheduling, and controlling. John Wiley & Sons.

H. Knoche and W. Hasselbring. 2018. Using Microservices for Legacy Software
Modernization. IEEE Software 35, 3 (2018), 44-49.

Rainer Koschke. 2003. Software visualization in software maintenance, reverse en-
gineering, and re-engineering: a research survey. Journal of Software Maintenance
and Evolution: Research and Practice 15, 2 (2003), 87-109.

James Lewis and Martin Fowler. 2014. Microservices: a Definition of This New
Architectural Term. https://www.martinfowler.com/articles/microservices.html
Robert C Martin. 2002. The single responsibility principle. The principles, patterns,
and practices of Agile Software Development (2002), 149-154.

Marjan Mernik. 2017. Domain-specific languages: A systematic mapping study.
In International Conference on Current Trends in Theory and Practice of Informatics.
Springer, 464-472.

Jason Miller. 2018. Spending on legacy IT continues to grow, but there is light at the
end of the tunnel. https://federalnewsnetwork.com/ask-the-cio/2018/08/spending-
on-legacy-it-continues-to-grow-but-there-is-light-at-the-end-of-the-tunnel/.
Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi. 2019. Design
principles, architectural smells and refactorings for microservices: a multivocal
review. SICS Software-Intensive Cyber-Physical Systems 35, 1-2 (sep 2019), 3-15.
Sam Newman. 2015. Building Microservices (1st ed.). O’Reilly Media.

(35]

[36

(37

[38

%
20,

[40

[41

[42

[43

[45

[46

[47

(48

N
o)

[50

[51

[52

[53

[54

[55

[57

[58

[59

EASE 2021, June 21-23, 2021, Trondheim, Norway

Sam Newman. 2019. Monolith to Microservices: Evolutionary Patterns to Transform
Your Monolith. O’Reilly Media.

Helena Holmstrom Olsson and Jan Bosch. 2014. Climbing the “Stairway to
Heaven”: evolving from agile development to continuous deployment of software.
In Continuous software engineering. Springer, 15-27.

David L Parnas. 1972. On the criteria to be used in decomposing systems into
modules. In Pioneers and Their Contributions to Software Engineering. Springer,
479-498.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. System-
atic Mapping Studies in Software Engineering. In 12th International Conference
on Evaluation and Assessment in Software Engineering (Italy) (EASE). British
Computer Society, Swinton, UK, 68-77.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and Software Technology 64 (2015), 1-18.

PML. 2017. A guide to the project management body of knowledge (PMBOK guide)
(6th ed.). Project Management Institute.

Francisco Ponce, Gaston Marquez, and Hernan Astudillo. 2019. Migrating from
monolithic architecture to microservices: A Rapid Review. In 38th International
Conference of the Chilean Computer Science Society (SCCC). IEEE, 1-7.

Michael Pratt. 2020. Ensuring backwards compatibility in distributed sys-
tems. https://stackoverflow.blog/2020/05/13/ensuring-backwards- compatibility-
in-distributed-systems/

Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering. Springer, 29-58.

Robert Seacord, Santiago Comella-Dorda, Grace Lewis, Patrick Place, and Daniel
Plakosh. 2001. Legacy System Modernization Strategies. Technical Report
CMU/SEI-2001-TR-025. Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA. http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=5729

Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. 2003. Modernizing
Legacy Systems: Software Technologies, Engineering Process and Business Practices.
Addison-Wesley Longman Publishing Co., Inc., USA.

Jacopo Soldani, Damian Tamburri, and Willem-Jan Heuvel. 2018. The Pains and
Gains of Microservices: A Systematic Grey Literature Review. Journal of Systems
and Software 146 (09 2018).

Davide Taibi and Valentina Lenarduzzi. 2018. On the Definition of Microservice
Bad Smells. IEEE Software vol 35 (05 2018).

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2017. Processes, motivations,
and issues for migrating to microservices architectures: An empirical investiga-
tion. IEEE Cloud Computing 4, 5 (2017), 22-32.

Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2019. Continuous Architect-
ing with Microservices and DevOps: A Systematic Mapping Study. In Communi-
cations in Computer and Information Science. Springer, 126-151.

Yingying Wang, Harsha Kadyala, and Julia Rubin. 2020. Promises and Challenges
of Microservices: an Exploratory Study. Empirical Software Engineering (2020),
1-45.

Coburn Watson, Scott Emmons, and Brendan Gregg. 2015. A Microscope on Mi-
croservices. http://techblog.netflix.com/2015/02/a- microscope- on-microservices.
html

PRIMARY SOURCES

Muhammad Abdullah, Waheed Igbal, and Abdelkarim Erradi. 2019. Unsupervised
learning approach for web application auto-decomposition into microservices.
Journal of Systems and Software 151 (2019).

Stephen Abrams, Patricia Cruse, John Kunze, and David Minor. 2010. Cura-
tion micro-services: A pipeline metaphor for repositories. In 5th International
Conference on Open Repositories.

Mohsen Ahmadvand and Amjad Ibrahim. 2016. Requirements Reconciliation for
Scalable and Secure Microservice (De)composition. In IEEE 24th International
Requirements Engineering Conference Workshops (REW).

Omar Al-Debagy and Peter Martinek. 2019. A New Decomposition Method
for Designing Microservices. Periodica Polytechnica Electrical Engineering and
Computer Science 63, 4 (2019).

Adambarage Anuruddha Chathuranga De Alwis, Alistair Barros, Colin Fidge,
and Artem Polyvyanyy. 2018. Discovering Microservices in Enterprise Systems
Using a Business Object Containment Heuristic. In Lecture Notes in Computer
Science.

Mohammad Javad Amiri. 2018. Object-Aware Identification of Microservices. In
IEEE International Conference on Services Computing (SCC).

Martin Arévalo, Carlos Escobar, Pascal Monasse, Nelson Monzon, and Miguel
Colom. 2017. The IPOL Demo System: A Scalable Architecture of Microservices
for Reproducible Research. In Reproducible Research in Pattern Recognition.
Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture. IEEE

https://thenewstack.io/five-principles-monitoring-microservices/
https://martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/articles/feature-toggles.html
https://www.martinfowler.com/articles/microservices.html
https://stackoverflow.blog/2020/05/13/ensuring-backwards-compatibility-in-distributed-systems/
https://stackoverflow.blog/2020/05/13/ensuring-backwards-compatibility-in-distributed-systems/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5729
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5729
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html

EASE 2021, June 21-23, 2021, Trondheim, Norway

[60]

[61

[62]

[63]

[64

[65

(66

[67

[68]

[69]

[70]

[73]

[74

[75]

[76]

(77

[78]

[79]

[80

[81]

[82

[83]

Software 33, 3 (2016).

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Migrating
to Cloud-Native Architectures Using Microservices: An Experience Report. In
Communications in Computer and Information Science.

Luciano Baresi, Martin Garriga, and Alan De Renzis. 2017. Microservices Identi-
fication Through Interface Analysis. In Service-Oriented and Cloud Computing.
Amina Boubendir, Emmanuel Bertin, and Noemie Simoni. 2017. A VNF-as-a-
service design through micro-services disassembling the IMS. In 20th Conference
on Innovations in Clouds, Internet and Networks (ICIN).

Antonio Bucchiarone, Kemal Soysal, and Claudio Guidi. 2020. A Model-Driven
Approach Towards Automatic Migration to Microservices. In Software Engineer-
ing Aspects of Continuous Development and New Paradigms of Software Production
and Deployment.

Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assuncao, Rodrigo Bonifacio,
Leonardo P. Tizzei, and Thelma Elita Colanzi. 2019. EExtraction of configurable
and reusable microservices from legacy systems: An exploratory study. In 23rd
International Systems and Software Product Line Conference) - volume A.

Rui Chen, Shanshan Li, and Zheng Li. 2017. From Monolith to Microservices: A
Dataflow-Driven Approach. In 24th Asia-Pacific Software Engineering Conference.
Andreas Christoforou, Lambros Odysseos, and Andreas Andreou. 2019. Migra-
tion of Software Components to Microservices: Matching and Synthesis. In 14th
International Conference on Evaluation of Novel Approaches to Software Engineer-
ing.

Michel Cojocaru, Alexandru Uta, and Ana-Maria Oprescu. 2019. MicroValid: A
Validation Framework for Automatically Decomposed Microservices. In IEEE
International Conference on Cloud Computing Technology and Science.

Hugo S. da Silva, Glauco Carneiro, and Miguel Monteiro. 2019. Towards a
Roadmap for the Migration of Legacy Software Systems to a Microservice based
Architecture. In 9th International Conference on Cloud Computing and Services
Science.

Hugo S. da Silva, Glauco Carneiro, and Miguel Monteiro. 2019. Towards a
Roadmap for the Migration of Legacy Software Systems to a Microservice based
Architecture. In 9th International Conference on Cloud Computing and Services
Science.

Daniel Escobar, Diana Cardenas, Rolando Amarillo, Eddie Castro, Kelly Garces,
Carlos Parra, and Rubby Casallas. 2016. Towards the understanding and evolution
of monolithic applications as microservices. In 42nd Latin American Computing
Conference.

Sinan Eski and Feza Buzluca. 2018. An Automatic Extraction Approach - Transi-
tion to Microservices Architecture from Monolithic Application. In 19th Interna-
tional Conference on Agile Software Development Companion (XP).

Chen-Yuan Fan and Shang-Pin Ma. 2017. Migrating Monolithic Mobile Applica-
tion to Microservice Architecture: An Experiment Report. In IEEE International
Conference on AI & Mobile Services (AIMS).

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2018. Migrating Towards
Microservice Architectures: An Industrial Survey. In International Conference on
Software Architecture.

Arvind Gopu, Soichi Hayashi, Michael D. Young, Ralf Kotulla, Robert Henschel,
and Daniel Harbeck. 2016. Trident: scalable compute archives: workflows, vi-
sualization, and analysis. In Software and Cyberinfrastructure for Astronomy IV,
Gianluca Chiozzi and Juan C. Guzman (Eds.).

Jean-Philippe Gouigoux and Dalila Tamzalit. 2017. From Monolith to Microser-
vices: Lessons Learned on an Industrial Migration to a Web Oriented Architecture.
In International Conference on Software Architecture Workshops.

Dong Guo, Wei Wang, Jingxuan Zhang, Qiao Xiang, Chenxi Huang, Jinda Chang,
and Liqing Zhang. 2016. Cloudware: An emerging software paradigm for cloud
computing. In 8th Asia-Pacific Symp. on Internetware.

Michael Gysel, Lukas Kélbener, Wolfgang Giersche, and Olaf Zimmermann. 2016.
Service Cutter: A Systematic Approach to Service Decomposition. In Service-
Oriented and Cloud Computing.

Sara Hassan, Nour Ali, and Rami Bahsoon. 2017. Microservice Ambients: An
Architectural Meta-Modelling Approach for Microservice Granularity. In Inter-
national Conference on Software Architecture.

Sara Hassan and Rami Bahsoon. 2016. Microservices and Their Design Trade-Offs:
A Self-Adaptive Roadmap. In IEEE International Conference on Services Computing
(5CC).

Wilhelm Hasselbring and Guido Steinacker. 2017. Microservice Architectures for
Scalability, Agility and Reliability in E-Commerce. In International Conference on
Software Architecture Workshops.

Alexis Henry and Youssef Ridene. 2019. Migrating to Microservices. In Microser-
vices. Springer, 45-72.

Baskaran Jambunathan and Y Kalpana. 2016. Multi cloud deployment with
containers. International J. of Engineering and Technology 8, 1 (2016).

Andrea Janes and Barbara Russo. 2019. Automatic Performance Monitoring and
Regression Testing During the Transition from Monolith to Microservices. In
International Symp. on Software Reliability Engineering Workshops.

Wolfart, et al.

[84] Wuxia Jin, Ting Liu, Qinghua Zheng, Di Cui, and Yuanfang Cai. 2018.
Functionality-Oriented Microservice Extraction Based on Execution Trace Clus-
tering. In IEEE International Conference on Web Services (ICWS).

Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Matsuo. 2018.

Extracting Candidates of Microservices from Monolithic Application Code. In

25th Asia-Pacific Software Engineering Conference.

Gabor Kecskemeti, Attila Csaba Marosi, and Attila Kertesz. 2016. The ENTICE ap-

proach to decompose monolithic services into microservices. In 2016 International

Conference on High Performance Computing & Simulation.

Sander Klock, Jan Martijn E. M. van der Werf, Jan Pieter Guelen, and Slinger

Jansen. 2017. Workload-Based Clustering of Coherent Feature Sets in Microser-

vice Architectures. In International Conference on Software Architecture.

Holger Knoche. 2016. Sustaining Runtime Performance while Incrementally

Modernizing Transactional Monolithic Software towards Microservices. In 7th

International Conference on Performance Engineering.

Holger Knoche and Wilhelm Hasselbring. 2018. Using Microservices for Legacy

Software Modernization. IEEE Software 35, 3 (2018).

Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. 2015. Towards a

Technique for Extracting Microservices from Monolithic Enterprise Systems. In

3rd Brazilian Workshop on Software Visualization, Evolution and Maintenance.

Frank Leymann, Johannes Wettinger, Sebastian Wagner, and Christoph Fehling.

2016. Native Cloud Applications - Why Virtual Machines, Images and Containers

Miss the Point!. In 6th International Conference on Cloud Computing and Services

Science.

Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao,

Jidong Ge, and Zhihao Shan. 2019. A dataflow-driven approach to identifying

microservices from monolithic applications. J. of Systems and Software 157 (2019).

Jyhjong Lin, Lendy Chaoyu Lin, and Shiche Huang. 2016. Migrating web applica-

tions to clouds with microservice architectures. In International Conference on

Applied System Innovation (ICASI).

David S. Linthicum. 2016. Practical Use of Microservices in Moving Workloads

to the Cloud. IEEE Cloud Computing 3, 5 (2016).

Prabal Mahanta and Suchin Chouta. 2020. Translating a Legacy Stack to Mi-

croservices Using a Modernization Facade with Performance Optimization for

Container Deployments. In Workshops On the Move to Meaningful Internet Systems

(OTM).

Salvatore Augusto Maisto, Beniamino Di Martino, and Stefania Nacchia. 2019.

From Monolith to Cloud Architecture Using Semi-automated Microservices

Modernization. In Advances on P2P, Parallel, Grid, Cloud and Internet Computing.

[97] Genc Mazlami, Jurgen Cito, and Philipp Leitner. 2017. Extraction of Microservices

from Monolithic Software Architectures. In IEEE International Conference on Web

Services (ICWS).

Alan Megargel, Venky Shankararaman, and David K. Walker. 2020. Migrating

from Monoliths to Cloud-Based Microservices: A Banking Industry Example. In

Computer Communications and Networks.

Ola Mustafa, Jorge Marx Gémez, Mohamad Hamed, and Hergen Pargmann. 2017.

GranMicro: A Black-Box Based Approach for Optimizing Microservices Based

Applications. In Progress in IS.

[100] Petru Nicolaescu and Ralf Klamma. 2015. A Methodology and Tool Support for
Widget-Based Web Application Development. In Engineering the Web in the Big
Data Era.

[101] Luis Nunes, Nuno Santos, and Anténio Rito Silva. 2019. From a Monolith to a
Microservices Architecture: An Approach Based on Transactional Contexts. In
Software Architecture.

[102] Joonseok Park, Mikyeong Moon, and Keunhyuk Yeom. 2019. Approach to
Identify Microservices based on Analysis Class Model. International 3. of Advanced
Science and Technology 28, 4 (2019).

[103] Ilaria Pigazzini, Francesca Arcelli Fontana, and Andrea Maggioni. 2019. Tool
Support for the Migration to Microservice Architecture: An Industrial Case Study.
In Software Architecture.

[104] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei,
and Tao Huang. 2018. Migrating Web Applications from Monolithic Structure to
Microservices Architecture. In 10th Asia-Pacific Symp. on Internetware.

[105] Anika Sayara, Md. Shamim Towhid, and Md. Shahriar Hossain. 2017. A proba-
bilistic approach for obtaining an optimized number of services using weighted
matrix and multidimensional scaling. In 20th International Conference of Computer
and Information Technology (ICCIT).

[106] Walter Scarborough, Carrie Arnold, and Maytal Dahan. 2016. Case Study:
Microservice Evolution and Software Lifecycle of the XSEDE User Portal API
(XSEDE16). New York, NY, USA.

[107] Anfel Selmadji, Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony,
and Rahina Oumarou Mahamane. 2018. Re-architecting OO Software into Mi-
croservices - A Quality-Centred Approach. In Service-Oriented and Cloud Com-
puting.

[108] Atsushi Shimoda and Tsubasa Sunada. 2018. Priority Order Determination
Method for Extracting Services Stepwise from Monolithic System. In 7th Interna-
tional Congress on Advanced Applied Informatics (IIAI-AAI).

[85

[86

(87

%
&,

[89

[90

[91

[92

[93

[94

[95

[96

[98

[99

Modernizing Legacy Systems with Microservices: A Roadmap

[109] Davide Taibi and Kari Systé. 2019. From Monolithic Systems to Microservices:
A Decomposition Framework based on Process Mining. In 9th International
Conference on Cloud Computing and Services Science.

[110] Tomohiro Takeda, Masakazu Takahashi, Tsuyoshi Yumoto, Satoshi Masuda,
Tohru Matsuodani, and Kazuhiko Tsuda. 2019. Applying Change Impact Analysis
Test to Migration Test Case Extraction Based on IDAU and Graph Analysis
Techniques. In International Conference on Software Testing, Verification and

Validation Workshops.

EASE 2021, June 21-23, 2021, Trondheim, Norway

[111] Dmitri Tchoubraev and Daniel Wiczynski. 2015. Swiss TSO integrated op-
erational planning, optimization and ancillary services system. In 2015 IEEE
Eindhoven PowerTech.

[112] Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu. 2018. Identi-
fying Microservices Using Functional Decomposition. In Dependable Software
Engineering. Theories, Tools, and Applications.

[113] Zhiping Luo UU, Michel Korpershoek, and AnaMaria Oprescu VU. 2015. Towards
a MicroServices Architecture for Clouds. (2015).

	Abstract
	1 Introduction
	2 Study Design and Execution
	2.1 Primary Sources Selection
	2.2 Data extraction
	2.3 Data Classification and roadmap definition

	3 Results and Analysis
	3.1 Driving Forces
	3.2 Activities and Information

	4 Threats to Validity
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

